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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs
In parabolic PDEs, since B> — 4AC = 0, the determinant yields
to B2 — 4A*C* = 0. We have two cases to obtain canonical
forms of hyperbolic PDEs:

> A*=B*=0and C* £ 0,

» A*£0and B* = C* =0.
The first canonical form of the parabolic PDEs, considering A* #
0Oand B*=C*=0,is

Uee = Hs (6.6)

where H; = ’;\’— Similarly, considering A* = B* = 0 and C* # 0,
one may also take

Uy = Hy (6.7)

where Hy = *C’— which is called the second canonical form of the
parabolic PDEs.
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Note that, for B2>—4AC = 0, the characteristic equations in (5.13)
coincide. Thus, we obtain only a single integral £ = constant and
n can be chosen freely to make the Jacobian (5.4) nonzero, for
instance n = y (or, without loss of generality, n = x). To see this,
we consider
B* = 2A&nx + B(gxny + §y77x) +2C&mny =0
rcem dy & _2C _4AC _ B* _ B

dx & B 2AB 2AB 2A

(6.8)

which are the characteristic equations for the parabolic PDEs.
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Note also that, the same implication holds also when 7 is se-
lected as n = x. The solution of this characteristic equation may
be written as

®1(x,y) = ¢q, for constant Cy. (6.9)
Hence the transformations

E=¢1(x,y)andn =y (6.10)

will transform the PDE (5.10) into a canonical form.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Example 19
Find the general solution of the PDE

X2 Uy + 2xYUyy + y2Uyy = 0, (6.11)

by obtaining its CANONICAL FORM.
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs
When B? — 4AC < 0, we have an elliptic PDE. After appropri-
ate transformation, the determinant will be transformed to B*> —
4A*C* < 0. For this case, we will consider the choice of A* =
C* # 0 and B* = 0 and this choice will result a to the following
real canonical form:

Uge + Upy = Hs. (6.18)
Here Hs = 4 and this equation is called the real canonical form

of the elliptic PDEs. Moreover, the choice A* = C* # 0 and
B* = 0 yields

A*—C*=0

— A& — 1) + B(&x&y — mwmy) + C(&2 —115) = 0, (6.19a)
B* =0

= 2ASmx + B(&xmy + &ynx) +2C&ymy =0 (6.19b)
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

From (6.19a) and (6.19b), we obtain
A" - C" +iB*
= A"(& + inx)® + B (& + ine) (& + iny) + C* (& + imy)? = 0
= a(gii) o (Eiiy) o=

Note that, along the curves £ =constant and n =constant, we have d§ =
Exdx+&,dy = 0and dn = nxdx+mnydy = 0 which, in turn, imply % = —gi—;;’;.
From this and the roots of (6.20), we obtain

(6.20)

dy B=+ivV4AC — B2
ay _ Bxivaab = b7 (6.21)
ax 2A

The solutions of this complex characteristic equations may be obtained as

®1(x,y) = ¢1 and P2(x, y) = ¢z, for €1, Cp are constants. (6.22)
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Defining ¢©1 := £ + in and &, := £ — in, the following transforma-
tion is obtained

0] 0]
g :Red>1 = 1 —g 27
0. "o (6.23)
n =Im ¢2 = 71 ; 2 .
2i

which will transform the PDE (5.10) into a real canonical form.
Note that, the transformation (6.22) will transform the PDE (5.10)
into the complex canonical form of the elliptic PDEs as

Up o, = He (6.24)

where Hs = 1.
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Example 20
Find the general solution of the PDE

UXX + X2Uyy - 0, (625)

by obtaining its (REAL/COMPLEX) CANONICAL FORM.
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