MTM3502-Partial Differential Equations

Gökhan Göksu, PhD

Week 10

YTU

Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

 In parabolic PDEs, since $B^{2}-4 A C=0$, the determinant yields to $B^{* 2}-4 A^{*} C^{*}=0$. We have two cases to obtain canonical forms of hyperbolic PDEs:- $A^{*}=B^{*}=0$ and $C^{*} \neq 0$,
- $A^{*} \neq 0$ and $B^{*}=C^{*}=0$.

The first canonical form of the parabolic PDEs, considering $A^{*} \neq$ 0 and $B^{*}=C^{*}=0$, is

$$
\begin{equation*}
u_{\xi \xi}=H_{3} \tag{6.6}
\end{equation*}
$$

where $H_{3}=\frac{H^{*}}{A^{*}}$. Similarly, considering $A^{*}=B^{*}=0$ and $C^{*} \neq 0$, one may also take

$$
\begin{equation*}
u_{\eta \eta}=H_{4} \tag{6.7}
\end{equation*}
$$

where $H_{4}=\frac{H^{*}}{C^{*}}$ which is called the second canonical form of the parabolic PDEs.

Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Note that, for $B^{2}-4 A C=0$, the characteristic equations in (5.13) coincide. Thus, we obtain only a single integral $\xi=$ constant and η can be chosen freely to make the Jacobian (5.4) nonzero, for instance $\eta=y$ (or, without loss of generality, $\eta=x$). To see this, we consider

$$
\begin{align*}
& B^{*}=2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y}=0 \\
& \xlongequal{\eta=y} \neq B^{*}=B \xi_{x}+2 C \xi_{y}=0 \tag{6.8}\\
& \eta=\text { oconst } \\
& \xlongequal{\eta} \frac{d y}{d x}=-\frac{\xi_{x}}{\xi_{y}}=\frac{2 C}{B}=\frac{4 A C}{2 A B}=\frac{B^{2}}{2 A B}=\frac{B}{2 A} .
\end{align*}
$$

which are the characteristic equations for the parabolic PDEs.

Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Note also that, the same implication holds also when η is selected as $\eta=x$. The solution of this characteristic equation may be written as

$$
\begin{equation*}
\phi_{1}(x, y)=c_{1}, \text { for constant } c_{1} . \tag{6.9}
\end{equation*}
$$

Hence the transformations

$$
\begin{equation*}
\xi=\phi_{1}(x, y) \text { and } \eta=y \tag{6.10}
\end{equation*}
$$

will transform the PDE (5.10) into a canonical form.

Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Example 19

Find the general solution of the PDE

$$
\begin{equation*}
x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0, \tag{6.11}
\end{equation*}
$$

by obtaining its CANONICAL FORM.

Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

 When $B^{2}-4 A C<0$, we have an elliptic PDE. After appropriate transformation, the determinant will be transformed to $B^{* 2}$ $4 A^{*} C^{*}<0$. For this case, we will consider the choice of $A^{*}=$ $C^{*} \neq 0$ and $B^{*}=0$ and this choice will result a to the following real canonical form:$$
\begin{equation*}
u_{\xi \xi}+u_{\eta \eta}=H_{5} . \tag{6.18}
\end{equation*}
$$

Here $H_{5}=\frac{H^{*}}{A^{*}}$ and this equation is called the real canonical form of the elliptic PDEs. Moreover, the choice $A^{*}=C^{*} \neq 0$ and $B^{*}=0$ yields

$$
\begin{align*}
& A^{*}-C^{*}=0 \\
& \Longrightarrow A\left(\xi_{x}^{2}-\eta_{x}^{2}\right)+B\left(\xi_{x} \xi_{y}-\eta_{x} \eta_{y}\right)+C\left(\xi_{y}^{2}-\eta_{y}^{2}\right)=0, \tag{6.19a}\\
& B^{*}=0 \\
& \Longrightarrow 2 A \xi_{x} \eta_{x}+B\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 C \xi_{y} \eta_{y}=0 \tag{6.19b}
\end{align*}
$$

Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

From (6.19a) and (6.19b), we obtain

$$
\begin{align*}
& A^{*}-C^{*}+i B^{*} \\
& =A^{*}\left(\xi_{x}+i \eta_{x}\right)^{2}+B^{*}\left(\xi_{x}+i \eta_{x}\right)\left(\xi_{y}+i \eta_{y}\right)+C^{*}\left(\xi_{y}+i \eta_{y}\right)^{2}=0 \tag{6.20}\\
& \Longrightarrow A^{*}\left(\frac{\xi_{x}+i \eta_{x}}{\xi_{y}+i \eta_{y}}\right)^{2}+B^{*}\left(\frac{\xi_{x}+i \eta_{x}}{\xi_{y}+i \eta_{y}}\right)+C^{*}=0
\end{align*}
$$

Note that, along the curves $\xi=$ constant and $\eta=$ constant, we have $d \xi=$ $\xi_{x} d x+\xi_{y} d y=0$ and $d \eta=\eta_{x} d x+\eta_{y} d y=0$ which, in turn, imply $\frac{d y}{d x}=-\frac{\xi_{x}+i \eta_{x}}{\xi_{y}+i i_{y}}$. From this and the roots of (6.20), we obtain

$$
\begin{equation*}
\frac{d y}{d x}=\frac{B \pm i \sqrt{4 A C-B^{2}}}{2 A} \tag{6.21}
\end{equation*}
$$

The solutions of this complex characteristic equations may be obtained as

$$
\begin{equation*}
\Phi_{1}(x, y)=c_{1} \text { and } \Phi_{2}(x, y)=c_{2}, \text { for } c_{1}, c_{2} \text { are constants. } \tag{6.22}
\end{equation*}
$$

Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Defining $\Phi_{1}:=\xi+i \eta$ and $\Phi_{2}:=\xi-i \eta$, the following transformation is obtained

$$
\begin{align*}
& \xi=\operatorname{Re} \Phi_{1}=\frac{\Phi_{1}+\Phi_{2}}{2} \tag{6.23}\\
& \eta=\operatorname{Im} \Phi_{2}=\frac{\Phi_{1}-\Phi_{2}}{2 i}
\end{align*}
$$

which will transform the PDE (5.10) into a real canonical form. Note that, the transformation (6.22) will transform the PDE (5.10) into the complex canonical form of the elliptic PDEs as

$$
\begin{equation*}
u_{\Phi_{1} \Phi_{2}}=H_{6} \tag{6.24}
\end{equation*}
$$

where $H_{6}=\frac{H^{*}}{i B^{*}}$.

Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Example 20

Find the general solution of the PDE

$$
\begin{equation*}
u_{x x}+x^{2} u_{y y}=0, \tag{6.25}
\end{equation*}
$$

by obtaining its (REAL/COMPLEX) CANONICAL FORM.

