MTM3502-Partial Differential Equations

Gökhan Göksu, PhD

Week 2

MTU

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

 Last week, we introduced the structural classification of PDEs according to their linearity. By definition, a linear PDE is also a semi-linear PDE, a semi-linear PDE is a quasi-linear PDE and the nonlinear PDEs constitutes the general class for first order PDEs. However, the converse implication does not hold. See the following relations among the classes of first order PDEs.

Figure: The Relations among the Classes of First Order PDEs.

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

To this regard, we, first, present the Lagrange's method for first order quasilinear PDEs which is also valid for first order linear and semi-linear PDEs.
Theorem
Recall the quasi-linear PDE

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{1.12}
\end{equation*}
$$

The general solution of (1.12) is of the form

$$
\begin{equation*}
\varphi(\eta, \xi)=0 \tag{2.1}
\end{equation*}
$$

where φ is an arbitrary function of

$$
\begin{gather*}
\eta(x, y, u)=c_{1} \\
\xi(x, y, u)=c_{2} \tag{2.2}\\
c_{1}, c_{2} \in \mathbb{R}
\end{gather*}
$$

which form a solution of

$$
\begin{equation*}
\frac{d x}{a(x, y, u)}=\frac{d y}{b(x, y, u)}=\frac{d u}{c(x, y, u)} \tag{2.3}
\end{equation*}
$$

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Proof.
Since $\eta(x, y, u)=c_{1}$ is a solution of (2.3), the total derivative of η

$$
\begin{equation*}
\frac{\partial \eta}{\partial x} d x+\frac{\partial \eta}{\partial y} d y+\frac{\partial \eta}{\partial u} d u=0 \tag{2.4}
\end{equation*}
$$

and (2.3) must be compatible. Therefore, we have

$$
\begin{equation*}
a(x, y, u) \eta_{x}+b(x, y, u) \eta_{y}+c(x, y, u) \eta_{u}=0 \tag{2.5}
\end{equation*}
$$

Similarly, we can also obtain

$$
\begin{equation*}
a(x, y, u) \xi_{x}+b(x, y, u) \xi_{y}+c(x, y, u) \xi_{u}=0 \tag{2.6}
\end{equation*}
$$

Solving (2.5) and (2.6) for the functions a, b and c, we have

$$
\begin{equation*}
\frac{a(x, y, u)}{\eta_{y} \xi_{u}-\eta_{u} \xi_{y}}=\frac{b(x, y, u)}{\eta_{u} \xi_{x}-\eta_{x} \xi_{u}}=\frac{c(x, y, u)}{\eta_{x} \xi_{y}-\eta_{y} \xi_{x}} . \tag{2.7}
\end{equation*}
$$

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Proof (Continued).

Considering (2.1) and differentiating it partially with respect to x and y yields

$$
\begin{align*}
\frac{\partial \varphi}{\partial \eta}\left(\frac{\partial \eta}{\partial x}+\frac{\partial \eta}{\partial u} \frac{\partial u}{\partial x}\right) & +\frac{\partial \varphi}{\partial \xi}\left(\frac{\partial \xi}{\partial x}+\frac{\partial \xi}{\partial u} \frac{\partial u}{\partial x}\right) \\
& =\varphi_{\eta}\left(\eta_{x}+p \eta_{u}\right)+\varphi_{\xi}\left(\xi_{x}+p \xi_{u}\right)=0 \tag{2.8a}\\
\frac{\partial \varphi}{\partial \eta}\left(\frac{\partial \eta}{\partial y}+\frac{\partial \eta}{\partial u} \frac{\partial u}{\partial y}\right) & +\frac{\partial \varphi}{\partial \xi}\left(\frac{\partial \xi}{\partial y}+\frac{\partial \xi}{\partial u} \frac{\partial u}{\partial y}\right) \\
& =\varphi_{\eta}\left(\eta_{y}+q \eta_{u}\right)+\varphi_{\xi}\left(\xi_{y}+q \xi_{u}\right)=0 \tag{2.8b}
\end{align*}
$$

Writing (2.8a) and (2.8b) as a system yields to

$$
\left[\begin{array}{ll}
\eta_{x}+p \eta_{u} & \xi_{x}+p \xi_{u} \tag{2.9}\\
\eta_{y}+q \eta_{u} & \xi_{y}+q \xi_{u}
\end{array}\right]\left[\begin{array}{l}
\varphi_{\eta} \\
\varphi_{\xi}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Proof (Continued).

and a nontrivial solution for $\left[\begin{array}{ll}\varphi_{\eta} & \varphi_{\xi}\end{array}\right]^{\top}$ can be obtained only in the following case:

$$
\begin{align*}
& \left|\begin{array}{ll}
\eta_{x}+p \eta_{u} & \xi_{x}+p \xi_{u} \\
\eta_{y}+q \eta_{u} & \xi_{y}+q \xi_{u}
\end{array}\right|=0 \tag{2.10}\\
& \quad \Longrightarrow \quad\left(\eta_{x}+p \eta_{u}\right)\left(\xi_{y}+q \xi_{u}\right)-\left(\xi_{x}+p \xi_{u}\right)\left(\eta_{y}+q \eta_{u}\right)=0
\end{align*}
$$

Arranging the terms in (2.10), we obtain

$$
\begin{equation*}
p\left(\eta_{y} \xi_{u}-\eta_{u} \xi_{y}\right)+q\left(\eta_{u} \xi_{x}-\eta_{x} \xi_{u}\right)=\left(\eta_{x} \xi_{y}-\eta_{y} \xi_{x}\right) \tag{2.11}
\end{equation*}
$$

From equations (2.7) and (2.11) implies

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{1.12}
\end{equation*}
$$

which concludes the proof.

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

A similar result can also be shown for first order linear and semilinear PDEs.

Corollary
Recall the linear PDE

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=d(x, y) \tag{1.8}
\end{equation*}
$$

The general solution of (1.8) is of the form φ of (2.1) where φ is an arbitrary function of η and ξ of (2.2) which form a solution of

$$
\begin{equation*}
\frac{d x}{a(x, y)}=\frac{d y}{b(x, y)}=\frac{d u}{d(x, y)-c(x, y) u} \tag{2.12}
\end{equation*}
$$

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Corollary

Recall the semi-linear PDE

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}=c(x, y, u) \tag{1.10}
\end{equation*}
$$

The general solution of (1.10) is of the form φ of (2.1) where φ is an arbitrary function of η and ξ of (2.2) which form a solution of

$$
\begin{equation*}
\frac{d x}{a(x, y)}=\frac{d y}{b(x, y)}=\frac{d u}{c(x, y, u)} . \tag{2.13}
\end{equation*}
$$

Remark

Equating (2.3), (2.12) and (2.13) with dt, it is possible to obtain the characteristic equations of first order quasi-linear, linear and semi-linear PDEs, which were presented in (1.13), (1.9) and (1.11), respectively. We will investigate it later in detail.

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Example 4

Find the general solution of the first order linear PDE

$$
\begin{equation*}
u(x p-y q)=y^{2}-x^{2} \tag{2.14}
\end{equation*}
$$

Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange's Method

Example 5

Find the general solution of the PDE

$$
\begin{equation*}
x(x+y) p=y(x+y) q-(x-y)(2 x+2 y+u) \tag{2.19}
\end{equation*}
$$

Integral Surfaces Passing Through a Given Curve

Recall the quasi-linear PDE

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{1.12}
\end{equation*}
$$

and let the parametric equations of the given curve be

$$
\begin{equation*}
x=x(t), y=y(t), u=u(t), t \geq 0 \tag{2.33}
\end{equation*}
$$

Let also

$$
\begin{equation*}
\eta(x, y, u)=c_{1}, \xi(x, y, u)=c_{2} \tag{2.34}
\end{equation*}
$$

be any two solutions of the systems of the equations

$$
\begin{equation*}
\frac{d x}{a(x, y, u)}=\frac{d y}{b(x, y, u)}=\frac{d u}{c(x, y, u)} \tag{2.3}
\end{equation*}
$$

Integral Surfaces Passing Through a Given Curve

Then the general solution of (1.12) is

$$
\begin{equation*}
\varphi(\eta, \xi)=0 \tag{2.1}
\end{equation*}
$$

where φ is an arbitrary function. Since the integral surface has to pass through (2.33), we obtain

$$
\begin{equation*}
\eta(x(t), y(t), u(t))=c_{1}, \xi(x(t), y(t), u(t))=c_{2} \tag{2.35}
\end{equation*}
$$

subject to the condition that

$$
\begin{equation*}
\varphi\left(c_{1}, c_{2}\right)=0 \tag{2.36}
\end{equation*}
$$

Hence, the required integral surface can be obtained by eliminating c_{1} and c_{2} from (2.34), (2.3) and (2.36).

Integral Surfaces Passing Through a Given Curve

Example 6

Let us find the equation of the integral surface of the PDE

$$
\begin{equation*}
2 y(u-3) p+(2 x-u) q=y(2 x-3) \tag{2.37}
\end{equation*}
$$

which passes through the circle $z=0, x^{2}+y^{2}=2 x$.

Integral Surfaces Passing Through a Given Curve

Example 7

Find the general integral of the PDE

$$
\begin{equation*}
(x-y) p+(y-x-u) q=u \tag{2.45}
\end{equation*}
$$

and the particular solution through the circle

$$
\begin{equation*}
u=1, x^{2}+y^{2}=1 . \tag{2.46}
\end{equation*}
$$

Integral Surfaces Passing Through a Given Curve

Remark

In order to find the integral surface passing through a given curve;

- The procedure generally starts by finding the parametrization of the curve.
- Then, a relation between the constants is obtained from parametrization.
- Latter, the particular solution can be obtained from the constants obtained from the solution of the PDE.

