MTM3502-Partial Differential Equations

Gökhan Göksu, PhD

Week 4

MTU

Solution of Nonlinear PDEs of First Order: The Method of Charpit

 Consider the first order nonlinear PDE$$
\begin{equation*}
F(x, y, u, p, q)=0 . \tag{4.1}
\end{equation*}
$$

The method of Charpit consists of finding another first order PDE of the form

$$
\begin{equation*}
G(x, y, u, p, q)=0 \tag{4.2}
\end{equation*}
$$

so that

- The equations (4.1) and (4.2) can be solved for p and q and
- $d u=p d x+q d y$ is integrable.

From the compatibility of (4.1) and (4.2), we have

$$
\begin{equation*}
\frac{\partial(F, G)}{\partial(x, p)}+\frac{\partial(F, G)}{\partial(y, q)}+p \frac{\partial(F, G)}{\partial(u, p)}+q \frac{\partial(F, G)}{\partial(u, q)} \tag{4.3}
\end{equation*}
$$

which, in turn, yields

$$
\begin{align*}
F_{p} \frac{\partial G}{\partial x}+F_{q} \frac{\partial G}{\partial y} & +\left(p F_{p}+q f_{q}\right) \frac{\partial G}{\partial u} \\
& -\left(F_{x}+p F_{u}\right) \frac{\partial G}{\partial p}-\left(F_{y}+q F_{u}\right) \frac{\partial G}{\partial q}=0 . \tag{4.4}
\end{align*}
$$

Solution of Nonlinear PDEs of First Order: The Method of Charpit

Therefore, the corresponding auxiliary equations are

$$
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}=\frac{d u}{p F_{p}+q F_{q}}=\frac{d p}{-\left(F_{x}+p F_{u}\right)}=\frac{d q}{-\left(F_{y}+q F_{u}\right)} \text {. (4.5) }
$$

If we can find any solution of (4.5) involving p and q, it will serve as a PDE given by (4.2). Solving (4.1) and (4.2) for p and q, we can get the integral of $d u=p d x+q d y$ as the required solution.

Solution of Nonlinear PDEs of First Order: The Method of Charpit

Example 14
Use the method of Charpit to solve PDE

$$
\begin{equation*}
\left(p^{2}+q^{2}\right) y=q u . \tag{4.6}
\end{equation*}
$$

Solution of Nonlinear PDEs of First Order: The Method of Charpit

Example 15
Use the method of Charpit to solve the PDE

$$
\begin{equation*}
u^{2}=p q x y . \tag{4.1.1}
\end{equation*}
$$

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

In this subsection, we will discuss a geometrical method for solving nonlinear first order PDEs which is known as Cauchy's Method of Characteristics.

Recall that the plane passing through the point $P(x, y, u)$ with its normal parallel to the direction \vec{n} defined by the direction ratios [$p_{0}, q_{0},-1$] is uniquely specified by the 5 -tuple ($x_{0}, y_{0}, u_{0}, p_{0}, q_{0}$) and the 5 -tuple (x, y, u, p, q) is called the plane element of the space. In particular, a plane element whose components satisfy the equation

$$
\begin{equation*}
F(x, y, u, p, q)=0 . \tag{1.17}
\end{equation*}
$$

is called an integral element of the equation (1.17). Using (1.17), we can obtain q, by fixing the values of x, y, u and p, as

$$
\begin{equation*}
q=G(x, y, u, p) . \tag{4.21}
\end{equation*}
$$

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

By fixing $x=x_{0}, y=y_{0}$ and $u=u_{0}$, we obtain the plane element $\left(x_{0}, y_{0}, u_{0}, p, G\left(x_{0}, y_{0}, u_{0}, p\right)\right)$ which depends on p. This element envelopes a cone with the vertex P, named as elementary cone (or Monge's cone) and can be demonstrated as below.

Figure: The Elementary Cone of the PDE (1.17) at P.

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

 In order to solve the PDE (1.17), we find the characteristics equation for which we define by a curve C given by$$
\begin{equation*}
x=x(t), y=y(t), u=u(t) . \tag{4.22}
\end{equation*}
$$

Each point of this curve touches a generator (the edge) of the elementary cone and the strip so formed in this curve is known as a characteristic strip.

Figure: The Characteristic Strip of the PDE (1.17).

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

 The point $(x+d x, y+d y, u+d u)$ lies in the tangent plane to the elementary cone at P, if$$
\begin{equation*}
d u=p d x+q d y \tag{4.23}
\end{equation*}
$$

where p and q satisfy the relation (1.17). Differentiating (1.17) and (4.23) with respect to p, we obtain

$$
\begin{equation*}
\frac{\partial F}{\partial p}+\frac{\partial F}{\partial q} \frac{\partial q}{\partial p}=F_{p}+F_{q} \frac{\partial q}{\partial p}=0 \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
d x+\frac{\partial q}{\partial p} d y=0 \tag{4.25}
\end{equation*}
$$

respectively. Solving (4.24) and (4.25) for $d x, d y$ and $d u$, we obtain

$$
\begin{equation*}
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}=\frac{d u}{p F_{p}+q F_{q}} \tag{4.26}
\end{equation*}
$$

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Therefore, along the chracteristic strip, the functions $x^{\prime}(t), y^{\prime}(t)$ and $u^{\prime}(t)$ are proportional to F_{p}, F_{q} and $p F_{p}+q F_{q}$, respectively. Thus, equating (4.26) with $d t$, we have

$$
\begin{equation*}
x^{\prime}(t)=F_{p}, y^{\prime}(t)=F_{q}, u^{\prime}(t)=p F_{p}+q F_{q} . \tag{4.27}
\end{equation*}
$$

We also have $p=p(x, y)$ and $q=q(x, y)$ where x and y are functions of t. Differentiating p with respect to t, we get

$$
\begin{equation*}
p^{\prime}(t)=\frac{\partial p}{\partial x} x^{\prime}(t)+\frac{\partial p}{\partial y} y^{\prime}(t)=p_{x} F_{p}+p_{y} F_{q} . \tag{4.28}
\end{equation*}
$$

Note that $q_{x}=p_{y}$, so that we have

$$
\begin{equation*}
p^{\prime}(t)=p_{x} F_{p}+q_{x} F_{q} . \tag{4.29}
\end{equation*}
$$

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Differentiating (1.17) with respect to x, we get

$$
\begin{align*}
\frac{d F}{d x} & =\frac{\partial F}{\partial x}+\frac{\partial F}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial F}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial F}{\partial q} \frac{\partial q}{\partial x} \\
& =F_{x}+p F_{u}+F_{p} p_{x}+F_{q} q_{x} \tag{4.30}\\
& =0 .
\end{align*}
$$

Solving (4.29) and (4.30) leads to

$$
\begin{equation*}
F_{x}+p F_{u}+p^{\prime}(t)=0 \Longrightarrow p^{\prime}(t)=-\left(F_{x}+p F_{u}\right) . \tag{4.31}
\end{equation*}
$$

Similarly, we find that

$$
\begin{equation*}
F_{y}+q F_{u}+q^{\prime}(t)=0 \Longrightarrow q^{\prime}(t)=-\left(F_{y}+q F_{u}\right) . \tag{4.32}
\end{equation*}
$$

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Finally, we have the following system of ODEs for the determination of the characteristic strip.

$$
\begin{align*}
& x^{\prime}(t)=F_{p}, y^{\prime}(t)=F_{q}, u^{\prime}(t)=p F_{p}+q F_{q}, \tag{4.33}\\
& p^{\prime}(t)=-\left(F_{x}+p F_{u}\right), q^{\prime}(t)=-\left(F_{y}+q F_{u}\right) .
\end{align*}
$$

In order to solve the particular solution of the given PDE (1.17), we will now introduce the Cauchy problem. A Cauchy problem asks for the solution of a PDE that satisfies certain conditions that are given on a hypersurface in the domain. A Cauchy problem can be an initial value problem (IVP) and/or a boundary value problem (BVP).

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Cauchy Problem

Suppose that, we want to find the particular solution of (1.17), which passes through a curve Γ^{\prime} (which is considered as the initial values) whose parametric equations are

$$
\begin{equation*}
\Gamma^{\prime}: x=x_{0}(s), y=y_{0}(s), u=u_{0}(s) \tag{4.34}
\end{equation*}
$$

which is demonstrated below.

Figure: The Cauchy Problem of the PDE (1.17).

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Cauchy Problem

Note that, $u=u_{0}(s)$ is called as initial condition (IC) and $x=x_{0}(s)$ and $y=y_{0}(s)$ are called as boundary conditions (BCs).

The initial values p_{0} and q_{0} are determined from the relations

$$
\begin{align*}
& u_{0}^{\prime}(s)=p_{0}(s) x_{0}^{\prime}(s)+q_{0}(s) y_{0}^{\prime}(s) \tag{4.35a}\\
& F\left(x_{0}(s), y_{0}(s), u_{0}(s), p_{0}(s), q_{0}(s)\right)=0 \tag{4.35b}
\end{align*}
$$

If we substitute the values $x_{0}, y_{0}, u_{0}, p_{0}$ and q_{0} for $t=0$ in the solution obtained from the characteristic equations (4.33), we obtain

$$
\begin{equation*}
x=x(s, t), y=y(s, t), u=u(s, t) \tag{4.36}
\end{equation*}
$$

The elimination of s and t from these equations provides us a relation in terms of x, y and u

$$
\begin{equation*}
\phi(x, y, u)=0 \tag{4.37}
\end{equation*}
$$

which is the required integral surface of the given equation through the given curve Γ^{\prime}.

Solution of Nonlinear PDEs of FO: Cauchy's Method of Characteristics

Example 16

Find the characteristics of the equation $p q=u$ and determine the integral surface which passes through the parabola $x=0$, $y^{2}=u$.

