MTM3502-Partial Differential Equations

Gökhan Göksu, PhD

Week 7

MTU

Second Order Linear PDEs: Canonical Forms of Hyperbolic PDEs

 The general solutions of hyperbolic PDEs are obtained by their canonical forms. However, sometimes, it might not be so simple to determine the general solution of a given equation. If the canonical form of the equation is simple, then the general solution can be immediately ascertained. Let us recall the example of last week.
Example 18

Consider the PDE

$$
\begin{equation*}
y^{2} u_{x x}-x^{2} u_{y y}=0 . \tag{5.18}
\end{equation*}
$$

The canonical form of the given equation was

$$
\begin{equation*}
u_{\xi \eta}=\frac{\eta}{2\left(\xi^{2}-\eta^{2}\right)} u_{\xi}-\frac{\xi}{2\left(\xi^{2}-\eta^{2}\right)} u_{\eta} . \tag{5.21}
\end{equation*}
$$

where $\xi=y^{2}-x^{2}$ and $\eta=y^{2}+x^{2}$.

Second Order Linear PDEs: Canonical Forms of Hyperbolic PDEs

Multiplying both sides with -4 , we obtain

$$
\begin{align*}
& -4 u_{\xi \eta}=\frac{2 \eta}{\eta^{2}-\xi^{2}} u_{\xi}-\frac{2 \xi}{\eta^{2}-\xi^{2}} u_{\eta} \tag{6.1}\\
& \Longrightarrow-4 u_{\xi \eta}=\left(\ln \left(\eta^{2}-\xi^{2}\right)\right)_{\eta} u_{\xi}+\left(\ln \left(\eta^{2}-\xi^{2}\right)\right)_{\xi} u_{\eta} .
\end{align*}
$$

Without loss of generality, let us choose

$$
\begin{array}{ll}
-2 u_{\xi \eta}=\left(\ln \left(\eta^{2}-\xi^{2}\right)\right)_{\eta} u_{\xi}, & \left(u_{1}=u_{\xi}\right), \\
-2 u_{\xi \eta}=\left(\ln \left(\eta^{2}-\xi^{2}\right)\right)_{\xi} u_{\eta}, & \left(u_{2}=u_{\eta}\right), \tag{6.2b}
\end{array}
$$

Second Order Linear PDEs: Canonical Forms of Hyperbolic PDEs

From (6.2a), we have

$$
\begin{align*}
& \frac{d u_{1}}{u_{1}}=-\frac{\left(\ln \left(\eta^{2}-\xi^{2}\right)\right)_{\eta}}{2} d \eta \\
& \Longrightarrow \ln u_{1}=-\frac{\ln \left(\eta^{2}-\xi^{2}\right)}{2}+\ln \varphi(\xi) \\
& \Longrightarrow u_{1}=u_{\eta}=\frac{\varphi(\xi)}{\sqrt{\eta^{2}-\xi^{2}}} \tag{6.3}\\
& \Longrightarrow u=\varphi(\xi) \tanh ^{-1}\left(\frac{\eta}{\sqrt{\eta^{2}-\xi^{2}}}\right)+\varphi_{1}(\xi)
\end{align*}
$$

Similarly, from (6.2b), we have

$$
\begin{align*}
u_{2}=u_{\xi} & =\frac{\phi(\eta)}{\sqrt{\eta^{2}-\xi^{2}}} \\
\Longrightarrow u & =\phi(\eta) \tan ^{-1}\left(\frac{\xi}{\sqrt{\eta^{2}-\xi^{2}}}\right)+\phi_{1}(\eta) \tag{6.4}
\end{align*}
$$

Second Order Linear PDEs: Canonical Forms of Hyperbolic PDEs

Solving (6.3) and (6.4) together, we obtain

$$
\begin{align*}
& u(\xi, \eta)=c_{1} \tanh ^{-1}\left(\frac{\eta}{\sqrt{\eta^{2}-\xi^{2}}}\right) \tan ^{-1}\left(\frac{\xi}{\sqrt{\eta^{2}-\xi^{2}}}\right)+c_{2} \\
& \Longrightarrow u(x, y)=c_{1} \tanh ^{-1}\left(\frac{y^{2}+x^{2}}{2 x y}\right) \tan ^{-1}\left(\frac{y^{2}-x^{2}}{2 x y}\right)+c_{2} \tag{6.5}
\end{align*}
$$

which is a solution to (5.18) where c_{1} and c_{2} are arbitrary constants.

SO Linear PDEs with Constant Coefficients and Operator Factorization The general form of a second order linear PDE was given as

$$
\begin{equation*}
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G \tag{5.1}
\end{equation*}
$$

If A, B, C, D, E and F are real constants and G is a continuous function of x and y, then (5.1) is called a second order linear PDE with constant coefficients. This week, we will consider PDEs of these particular type and present an operator factorization technique for these type of PDEs.

In order to restate (5.1) in operator form, we define the following partial differential operators

$$
\begin{align*}
D_{x} & =\frac{\partial}{\partial x}, D_{y}=\frac{\partial}{\partial y} \\
D_{x}^{2}=\frac{\partial^{2}}{\partial x^{2}}, D_{y}^{2} & =\frac{\partial^{2}}{\partial y^{2}}, D_{x} D_{y}=\frac{\partial^{2}}{\partial x \partial y} \tag{7.1}
\end{align*}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization

 Then, (5.1) will be restated as$$
\begin{equation*}
L u=G(x, y) \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
L=A D_{x}^{2}+B D_{x} D_{y}+C D_{y}^{2}+D D_{x}+E D_{y}+F \tag{7.3}
\end{equation*}
$$

is the partial differential operator for (5.1). The operator L is a linear operator which satisfy the following property, for real constants c_{1} and c_{2} and partially second order differentiable functions u_{1} and u_{2},

$$
\begin{equation*}
L\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} L u_{1}+c_{2} L u_{2} . \tag{7.3}
\end{equation*}
$$

Suppose that u_{1} and u_{2} are the solutions to the homogeneous PDE

$$
\begin{equation*}
L u=0 \Longrightarrow L u_{1}=0 \text { and } L u_{2}=0 . \tag{7.4}
\end{equation*}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization Then, from linearity of L, the linear combination of u_{1} and u_{2}, which is $c_{1} u_{1}+c_{2} u_{2}$ for nonzero reals c_{1} and c_{2}, is also a solution of (7.4). This property is called as the superposition principle. The general solution of (7.4) is called the homogeneous solution and denoted as u_{h} whereas the particular solution to (7.2) is called the particular solution and denoted as u_{p}. Thus, the general solution of (7.2) have the following form

$$
\begin{equation*}
u=u_{h}+u_{p} \tag{7.5}
\end{equation*}
$$

Suppose that the operator L can be factorized as

$$
\begin{equation*}
L=L_{1} L_{2}=\left(\alpha_{1} D_{x}+\beta_{1} D_{y}+\gamma_{1}\right)\left(\alpha_{2} D_{x}+\beta_{2} D_{y}+\gamma_{2}\right) \tag{7.6}
\end{equation*}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{R}$, for $i=1$, 2. If $u=u(x, t)$ is a solution of $L_{2} u=0$, then $L u=L_{1} L_{2} u=L_{1} \cdot 0=0$ so that it is also a solution for $L u=0$ (the same can also shown for $L_{1} u=0$, without loss of generality). Now, let us consider

$$
L_{1} u=\left(\alpha_{1} D_{x}+\beta_{1} D_{y}+\gamma_{1}\right) u=\alpha_{1} p+\beta_{1} q+\varepsilon_{1} u=0 . \overline{(7.7)}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization

 From the Lagrange auxiliary equation, we have$$
\begin{equation*}
\frac{d x}{\alpha_{1}}=\frac{d y}{\beta_{1}}=\frac{d u}{-\gamma_{1} u} . \tag{7.8}
\end{equation*}
$$

Now, we consider three cases:

- Suppose $\alpha_{1} \neq 0$ holds. From (7.8), we have

$$
\begin{align*}
\frac{d x}{\alpha_{1}}=\frac{d y}{\beta_{1}} & \Longrightarrow \beta_{1} x-\alpha_{1} y=c_{1} \\
-\frac{\gamma_{1}}{\alpha_{1}} d x=\frac{d u}{u} & \Longrightarrow u=c_{2} e^{-\frac{\gamma_{1}}{\alpha_{1}} x} . \tag{7.9}
\end{align*}
$$

Therefore, the general solution of (7.7) will be

$$
\begin{equation*}
u_{h 1}=e^{-\frac{\gamma_{1}}{\alpha_{1}} x} \varphi\left(\beta_{1} x-\alpha_{1} y\right), \tag{7.10}
\end{equation*}
$$

where φ is an arbitrary function.

SO Linear PDEs with Constant Coefficients and Operator Factorization

From the Lagrange auxiliary equation, we have

$$
\begin{equation*}
\frac{d x}{\alpha_{1}}=\frac{d y}{\beta_{1}}=\frac{d u}{-\gamma_{1} u} . \tag{7.8}
\end{equation*}
$$

Now, we consider three cases:

- Suppose $\beta_{1} \neq 0$ holds. From (7.8), the general solution of (7.7) will be

$$
\begin{equation*}
u_{h 1}=e^{-\frac{\gamma_{1}}{\beta_{1}} y} \tilde{\varphi}\left(\beta_{1} x-\alpha_{1} y\right) \tag{7.11}
\end{equation*}
$$

where $\tilde{\varphi}$ is an arbitrary function.

- In the general case that both $\alpha_{1} \neq 0$ and $\beta_{1} \neq 0$ hold, either (7.10) or (7.11) may be chosen for general solution.

SO Linear PDEs with Constant Coefficients and Operator Factorization

 Similarly, the general solution of$$
\begin{align*}
L_{2} U & =\left(\alpha_{2} D_{x}+\beta_{2} D_{y}+\gamma_{2}\right) u \tag{7.12}\\
& =\alpha_{2} p+\beta_{2} q+\gamma_{2} u=0
\end{align*}
$$

will be either

$$
\begin{equation*}
u_{n 2}=e^{-\frac{\gamma_{2}}{\alpha_{2}} x} \phi\left(\beta_{2} x-\alpha_{2} y\right), \tag{7.13}
\end{equation*}
$$

for $\alpha_{2} \neq 0$ or

$$
\begin{equation*}
u_{h 2}=e^{-\frac{\gamma_{2}}{\beta_{2}} y} \tilde{\phi}\left(\beta_{2} x-\alpha_{2} y\right), \tag{7.14}
\end{equation*}
$$

for $\beta_{2} \neq 0$. As a result, the general homogeneous solution of $L u=0$ will be

$$
\begin{align*}
u_{h} & =u_{h 1}+u_{n 2} \\
& =e^{-\frac{\gamma_{1}}{\alpha_{1}} x} \varphi\left(\beta_{1} x-\alpha_{1} y\right)+e^{-\frac{\gamma_{2}}{\alpha_{2}} x} \phi\left(\beta_{2} x-\alpha_{2} y\right) . \tag{7.15}
\end{align*}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization

In the case that $\alpha_{1}=\alpha_{2}=\alpha$ and $\beta_{1}=\beta_{2}=\beta$, the homogeneous solutions of $L u=0$ will be

$$
\begin{equation*}
u_{h}=e^{-\frac{\gamma}{\alpha} x}(x \varphi(\beta x-\alpha y)+\phi(\beta x-\alpha y)) . \tag{7.16}
\end{equation*}
$$

for $\alpha \neq 0$ and

$$
\begin{equation*}
u_{h}=e^{-\frac{\gamma}{\beta} y}(y \varphi(\beta x-\alpha y)+\phi(\beta x-\alpha y)) \tag{7.17}
\end{equation*}
$$

for $\beta \neq 0$.

SO Linear PDEs with Constant Coefficients and Operator Factorization

The particular solution requires that we make an "initial assumption" about the form of the particular solution $u_{p}(x, y)$, but with the coefficients left unspecified. For the particular solution, the type of $G(x, y)$ in (7.2) determines the types of the particular solution candidate. Here are some of the following particular solution candidates for various types.

Table: Particular Solution Candidates for Various Types of $G(x, y)$.

$G(x, y)$	Particular Solution Candidate $u_{p}(x, y)$
Trigonometric	Trigonometric
Polynomial	Polynomial
Exponential	Exponential

SO Linear PDEs with Constant Coefficients and Operator Factorization

Example 21

Find the homogeneous and particular solution of

$$
\begin{equation*}
u_{x x}-u_{y y}-u_{x}+u_{y}=2 \cos (3 x+2 y) . \tag{7.18}
\end{equation*}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization

Example 22

Find the general solution of

$$
\begin{equation*}
4 u_{x x}-4 u_{x y}+u_{y y}+4 u_{x}-2 u_{y}=0 \tag{7.29}
\end{equation*}
$$

SO Linear PDEs with Constant Coefficients and Operator Factorization

Example 23

Find the general solution of

$$
\begin{equation*}
\left(2 D_{x}^{2}-5 D_{x} D_{y}+2 D_{y}^{2}\right) u=5 e^{x+3 y} \tag{7.32}
\end{equation*}
$$

where $D_{x}^{2}, D_{x} D_{y}$ and D_{y}^{2} are defined as in (7.1)

