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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs
In parabolic PDEs, since B> — 4AC = 0, the determinant yields
to B2 — 4A*C* = 0. We have two cases to obtain canonical
forms of hyperbolic PDEs:

> A*=B*=0and C* £ 0,

» A*£0and B* = C* =0.
The first canonical form of the parabolic PDEs, considering A* #
0Oand B*=C*=0,is

Uee = Hs (6.6)

where H; = ’;\’— Similarly, considering A* = B* = 0 and C* # 0,
one may also take

Uy = Hy (6.7)

where Hy = *C’— which is called the second canonical form of the
parabolic PDEs.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs
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Note that, for B2>—4AC = 0, the characteristic equations in (5.13)
coincide. Thus, we obtain only a single integral £ = constant and
n can be chosen freely to make the Jacobian (5.4) nonzero, for
instance n = y (or, without loss of generality, n = x). To see this,
we consider
B* = 2A&nx + B(gxny + §y77x) +2C&mny =0
rcem dy & _2C _4AC _ B* _ B

dx & B 2AB 2AB 2A

(6.8)

which are the characteristic equations for the parabolic PDEs.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs
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Note also that, the same implication holds also when 7 is se-
lected as n = x. The solution of this characteristic equation may
be written as

®1(x,y) = ¢q, for constant Cy. (6.9)
Hence the transformations

E=¢1(x,y)andn =y (6.10)

will transform the PDE (5.10) into a canonical form.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Example 19
Find the general solution of the PDE

X2 Uy + 2xYUyy + y2Uyy = 0, (6.11)

by obtaining its CANONICAL FORM.
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs
When B? — 4AC < 0, we have an elliptic PDE. After appropri-
ate transformation, the determinant will be transformed to B*> —
4A*C* < 0. For this case, we will consider the choice of A* =
C* # 0 and B* = 0 and this choice will result a to the following
real canonical form:

Uge + Upy = Hs. (6.18)
Here Hs = 4 and this equation is called the real canonical form

of the elliptic PDEs. Moreover, the choice A* = C* # 0 and
B* = 0 yields

AT —C =0
— A& — 1) + B(&x&y — mwmy) + C(&2 —115) = 0, (6.19a)
B* =0

= 2A&x + B(&xny + Eynx) +2C&ymy = 0 (6.19b)
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

From (6.19a) and (6.19b), we obtain
A" - C" +iB*
= A"(& + inx)® + B (& + ine) (& + iny) + C* (& + imy)? = 0
= a(gii) o (Eiiy) o=

Note that, along the curves £ =constant and n =constant, we have d§ =
Exdx+&,dy = 0and dn = nxdx+mnydy = 0 which, in turn, imply % = —gi—;;’;.
From this and the roots of (6.20), we obtain

(6.20)

dy B=+ivV4AC — B2
ay _ Bxivaab = b7 (6.21)
ax 2A

The solutions of this complex characteristic equations may be obtained as

®1(x,y) = ¢1 and P2(x, y) = ¢z, for €1, Cp are constants. (6.22)

7/30 Gokhan Goksu, PhD MTM3502



Second Order Linear PDEs: Canonical Forms of Elliptic PDEs
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Defining ¢©1 := £ + in and &, := £ — in, the following transforma-
tion is obtained

0] 0]
g :Red>1 = 1 —g 27
0. "o (6.23)
n =Im ¢2 = 71 ; 2 .
2i

which will transform the PDE (5.10) into a real canonical form.
Note that, the transformation (6.22) will transform the PDE (5.10)
into the complex canonical form of the elliptic PDEs as

Up o, = He (6.24)

where Hs = 1.
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Example 20
Find the general solution of the PDE

UXX + X2Uyy - 0, (625)

by obtaining its (REAL/COMPLEX) CANONICAL FORM.
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D’Alembert’s Solution for the Homogeneous Wave Equation
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As in first order PDEs, in order to find a particular solution of a
given PDE (of second or higher order), there is a need for some
ICs and/or BCs which is called the Cauchy problem. We, first,
start with investigating Cauchy problems for hyperbolic PDEs.
To study Cauchy problems for hyperbolic partial differential equa-
tions, it is quite natural to begin investigating the simplest and
yet most important equation, the one-dimensional wave equa-
tion, by the method of characteristics.

Consider the following Cauchy problem of an infinite string with
the IC

Ug — CPUyy =0, X€R, t>0, (8.1a)
u(x,0) =f(x), xeR, (8.1b)
ui(x,0) =g(x), xeR. (8.1¢)
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D’Alembert’s Solution for the Homogeneous Wave Equation
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By the method of characteristics, the characteristic equation will
be

dx? — c?dt? = 0, (8.2)
which reduces to
dx +cdt=0, dx—cdt=0. (8.3)
Integrating (8.3), we obtain the following characteristics
X+ct=c,x—ct=¢c — E=x+ct, n=x—ct. (8.4)
Evaluating the partial derivatives, we have
Usx = Uge + 2Ugy + Uy, Uy = C*(Uge — 2Ugyy + Uyy). (8.5)
Substituting (8.5) into (8.1a) yields
—4cPus, =0 £y, =0 (8.6)
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D’Alembert’s Solution for the Homogeneous Wave Equation
Integrating with respect to n and &, we have

E=x+ct

u(€,n) =€) +v(n) "= ulx.y)=d(x+ct)  (@87)
+1(x —ct),

where ¢ and v are (twice differentiable) arbitrary functions. This
is called the general solution of the wave equation.

Now applying the initial conditions (8.1b) and (8.1c), we obtain
u(x,0) =f(x) = ¢(x) + (x), (8.8a)
ui(x,0) =g(x) = c¢'(x) — cy'(x). (8.8b)
Integration of (8.8b) gives
1 X
o(x) —p(x) =~ [ g(§)d¢+ K (8.9)

C Jx

where Xy and K are arbitrary constants.
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D’Alembert’s Solution for the Homogeneous Wave Equation
Solving ¢ and ) from (8.8a) and (8.9), we obtain

600 = 510 + 5z [ a(de+ 5. 8.102)
00 = 5100~ 55 [ a€)de - 5, (8.100)

and the solution is given as
1

u(x,t) =5 [f(x + ct) + f(x — ct)]
x+ct x—ct
ool e@de- [ a0 ey

1 Xx+ct
=5 [f(x+ct) + f(x — et)] + 5 /X_Ct g(§)d¢

This solution is called the well-known d’Alembert solution of the
Cauchy problem for the one-dimensional wave equation.
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D’Alembert’s Solution for the Homogeneous Wave Equation

Example 27
Find the solution of the IVP

U — CPuxy =0, Xx€eR, t>0, (8.12a)
u(x,0) =sin x, x€R, (8.12b)
ui(x,0) =cos x, x €R. (8.12¢)
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D’Alembert’s Solution for the Homogeneous Wave Equation
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It follows from the d'Alembert solution that, if an initial displacement
or an initial velocity is located in a small neighborhood of some point
(%0, fo), it can influence only the area t > t, bounded by two character-
istics x—ct =constant and x+ct = constant with slope £(1/¢) passing
through the point (xo, fy), as shown in Figure 1. This means that the
initial displacement propagates with the speed % = ¢, whereas the
effect of the initial velocity propagates at all speeds up to ¢. This infi-
nite sector R in this figure is called the range of influence of the point

(X0, o).

X0 fo)

3

Figure: The Range of Influence of the Point (xo, fo).
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D’Alembert’s Solution for the Homogeneous Wave Equation
According to (8.11), the value of u(xo, t) depends on the initial data
f and g in the interval [xo — cfy, Xo + clp] which is cut out of the initial
line by the two characteristics x — ¢t =constant and x + ¢t =constant
with slope £(1/c) passing through the point (X, t). The interval [xo —
cly, Xo + clp] on the line t = 0 is called the domain of dependence of
the solution at the point (X, fp), as shown in Figure 3.

1

(xg, fg)

(=i 0) 1 ot 0) ¥

Figure: The Domain of Dependence of the Solution at the Point
(X0, to)-
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D’Alembert’s Solution for the Homogeneous Wave Equation
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(xp. fp)

{xg—ctp. 0) Xp (xptety,0) %

Figure: The Domain of Dependence of the Solution at the Point
(X0, fo)-

Since the solution u(x, t) at every point (x, t) inside the triangular
region D in this figure is completely determined by the Cauchy
data on the interval [xy — cfy, Xo + clp], the region D is called the
region of determinancy of the solution.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation
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Now, we consider the Cauchy problem for the nonhomogeneous
wave equation

Ug — CPuxy =h*(x,t), xeR, t>0, (8.14a)
u(x,0) =f(x), xeR, (8.14b)
ui(x,0) =g*(x), xeR. (8.14c)

By coordinate transformation y = ct, the problem is reduced to

Uxx — Uy =h(x,y), xeR, t>0, (8.15a)
u(x,0) =f(x), x€eR, (8.15b)
uy(x,0) =g(x), xeR. (8.15¢)

_ _g
where h=-% andg = <.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation
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Let Py(xo, ¥o) be a point of the plane and let Q(xg, 0) be the point
on the initial line y = 0. Then the characteristics, x+y =constant
of (8.15a) are two straight lines drawn through the point Py with
slopes +1. Obviously, they intersect the x-axis at the points
Pi(xo — ¥0,0) and P>(xo + ¥o,0), as shown in Figure 4.

Poeosn

By

Py istyo.0 [T Pravvn X

Figure: The Triangular Region R.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation
Let the sides of the triangle PyP; P, be designated by By, B
and By, and let R be the region representing the interior of the
triangle and its boundaries B. Integrating both sides of equation
(8.15a), we obtain

/ /R (Uxx — Uyy)dxdy = / /R h(x,y)dxdy.  (8.16)

Now, by taking M := uy and N := u, (and, therefore, Uy, = ¥
and uy, = ay) we apply Green’s theorem to obtain

//(Uxx Uyy)dxdy = // (aM—aN> dxdy

_ f{ (Ndx + Mdy) (8.17)
B
:fB(uydx—k uxdy).
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = By U By U By, we have three cases to consider:
» On Byj: Note that, since x = x where x varies from
X =Xy — Yo to X = X9+ yp and y = 0 (and, hence, dx = dx
and dy = 0), we have

/ (uxdy + uydx) :/ uydx
By By
Xo-LVo (8.18)

:/X uy(x,0)dx.

0—Yo
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = By U By U By, we have three cases to consider:

» On B;: Note that, since y = —x + x5 + yp and x varies from
X = Xp + yp t0 X = Xp (and, hence, dy = —dx), we have

[ (ks vdy) = [ (- (00 + uy - (~ay)
B B,

:/(X,y)—(XoJ’o) (—du) (8.19)
(%,¥)=(x0+Y0,0)

=u(Xo + ¥0,0) — u(xo, ¥o)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = By U By U By, we have three cases to consider:

> On B,: Note that, since y = x — xg + yp and x varies from
X = Xp to X = Xg — ¥p (and, hence, dy = dx), we have

/ (uydx + uxdy) :/ (uxdx + uydy)
B,

B,
_ /'(X,y)_(xo_y070) du (820)
(x,y)=(x0.¥0)

=u(Xo — ¥0,0) — u(xo, ¥o)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

By (8.17), (8.18), (8.19) and (8.20), we have

j{(uydx + Uxdy) = — 2U(Xo, Yo) + U(Xo — Yo, 0)
B
. (8.21)
+ u(xo + ¥0,0) + / uy(x,0)adx.

Xo—Yo

Combining (8.16), (8.17) and (8.21), we obtain

(%o, ¥0) = 31u(30 — ¥0.0) + (¥ + 0,0)]
(8.22)

1 [XotYo 1
+/ uy(x,O)dx—// h(x, y)dxdy.
2 X 2 R

0—Yo
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since xp and yg are chosen arbitrarily, as a consequence, we
replace xo by x and yp by y and (8.22) becomes

1 1 Xty
u(.y) =l =)+ el + 5 [ glo)de
’ =y (8.23)
- Z/Lh(ﬁ,n)dédn
and replacing y = ct, we have
X+ct

u(x,t) :%[f(x —ct) + f(x + ct)] + 210 /X_Ct g (&)d¢ 820
+ 1// h* (¢, 7)dedr '
2c R ’ ’
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

The integration region R is a triangular region enclosed by t = 0
and characteristics so that it is named as characteristic triangle.

R={¢n|0<r<t,x—c(t—71)<&<x+c(t—T1))8.25)

Figure: The Triangular Region R.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Therefore, (8.24) yields to

1 1 Xx+ct
u(x,t) :—[f(x —ct) + f(x + ct)] + 26 / g (&)d¢
o (8.25)

E=x—+ct— CT
/ / 7)dedr.
T= E=x—ct+cr
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 28
Determine the solution of

Uy — CZUXX =X, (8.263)
u(x,0) =sin x, (8.26b)
ui(x,0) =x. (8.26¢)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 29
Find the solution of the IVP

U — CPlxy =0, t>0, (8.28a)
u(x,0) =x3, (8.28b)
ui(x,0) =x,. (8.28¢)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 30
Find the solution of the IVP

Uxx — U =1, (8.30a)
u(x,0) =sin x, (8.30b)
ui(x,0) =x. (8.30c)
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