
MTM3502-Partial Differential Equations

Gökhan Göksu, PhD

Week 13

1 / 30 Gökhan Göksu, PhD MTM3502



Second Order Linear PDEs: Canonical Forms of Parabolic PDEs
In parabolic PDEs, since B2 − 4AC = 0, the determinant yields
to B∗2 − 4A∗C∗ = 0. We have two cases to obtain canonical
forms of hyperbolic PDEs:
▶ A∗ = B∗ = 0 and C∗ ̸= 0,
▶ A∗ ̸= 0 and B∗ = C∗ = 0.

The first canonical form of the parabolic PDEs, considering A∗ ̸=
0 and B∗ = C∗ = 0, is

uξξ = H3 (6.6)

where H3 = H∗

A∗ . Similarly, considering A∗ = B∗ = 0 and C∗ ̸= 0,
one may also take

uηη = H4 (6.7)

where H4 = H∗

C∗ which is called the second canonical form of the
parabolic PDEs.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Note that, for B2−4AC = 0, the characteristic equations in (5.13)
coincide. Thus, we obtain only a single integral ξ = constant and
η can be chosen freely to make the Jacobian (5.4) nonzero, for
instance η = y (or, without loss of generality, η = x). To see this,
we consider

B∗ = 2Aξxηx + B(ξxηy + ξyηx) + 2Cξyηy = 0
η = y
=⇒ B∗ = Bξx + 2Cξy = 0

ξ =const
η =const
=⇒ dy

dx
= −ξx

ξy
=

2C
B

=
4AC
2AB

=
B2

2AB
=

B
2A

.

(6.8)

which are the characteristic equations for the parabolic PDEs.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Note also that, the same implication holds also when η is se-
lected as η = x . The solution of this characteristic equation may
be written as

ϕ1(x , y) = c1, for constant c1. (6.9)

Hence the transformations

ξ = ϕ1(x , y) and η = y (6.10)

will transform the PDE (5.10) into a canonical form.
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Second Order Linear PDEs: Canonical Forms of Parabolic PDEs

Example 19
Find the general solution of the PDE

x2uxx + 2xyuxy + y2uyy = 0, (6.11)

by obtaining its CANONICAL FORM.
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs
When B2 − 4AC < 0, we have an elliptic PDE. After appropri-
ate transformation, the determinant will be transformed to B∗2 −
4A∗C∗ < 0. For this case, we will consider the choice of A∗ =
C∗ ̸= 0 and B∗ = 0 and this choice will result a to the following
real canonical form:

uξξ + uηη = H5. (6.18)

Here H5 = H∗

A∗ and this equation is called the real canonical form
of the elliptic PDEs. Moreover, the choice A∗ = C∗ ̸= 0 and
B∗ = 0 yields

A∗ − C∗ = 0

=⇒ A(ξ2
x − η2

x ) + B(ξxξy − ηxηy ) + C(ξ2
y − η2

y ) = 0, (6.19a)

B∗ = 0
=⇒ 2Aξxηx + B(ξxηy + ξyηx) + 2Cξyηy = 0 (6.19b)
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

From (6.19a) and (6.19b), we obtain

A∗ − C∗ + iB∗

= A∗(ξx + iηx)
2 + B∗(ξx + iηx)(ξy + iηy ) + C∗(ξy + iηy )

2 = 0

=⇒ A∗
(
ξx + iηx

ξy + iηy

)2

+ B∗
(
ξx + iηx

ξy + iηy

)
+ C∗ = 0

(6.20)

Note that, along the curves ξ = constant and η = constant, we have dξ =
ξx dx+ξy dy = 0 and dη = ηx dx+ηy dy = 0 which, in turn, imply dy

dx = − ξx+iηx
ξy+iηy

.
From this and the roots of (6.20), we obtain

dy
dx

=
B ± i

√
4AC − B2

2A
. (6.21)

The solutions of this complex characteristic equations may be obtained as

Φ1(x , y) = c1 and Φ2(x , y) = c2, for c1, c2 are constants. (6.22)
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Defining Φ1 := ξ + iη and Φ2 := ξ − iη, the following transforma-
tion is obtained

ξ =ReΦ1 =
Φ1 +Φ2

2
,

η =ImΦ2 =
Φ1 − Φ2

2i
.

(6.23)

which will transform the PDE (5.10) into a real canonical form.
Note that, the transformation (6.22) will transform the PDE (5.10)
into the complex canonical form of the elliptic PDEs as

uΦ1Φ2 = H6 (6.24)

where H6 = H∗

iB∗ .
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Second Order Linear PDEs: Canonical Forms of Elliptic PDEs

Example 20
Find the general solution of the PDE

uxx + x2uyy = 0, (6.25)

by obtaining its (REAL/COMPLEX) CANONICAL FORM.
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D’Alembert’s Solution for the Homogeneous Wave Equation

As in first order PDEs, in order to find a particular solution of a
given PDE (of second or higher order), there is a need for some
ICs and/or BCs which is called the Cauchy problem. We, first,
start with investigating Cauchy problems for hyperbolic PDEs.
To study Cauchy problems for hyperbolic partial differential equa-
tions, it is quite natural to begin investigating the simplest and
yet most important equation, the one-dimensional wave equa-
tion, by the method of characteristics.

Consider the following Cauchy problem of an infinite string with
the IC

utt − c2uxx =0, x ∈ R, t > 0, (8.1a)
u(x ,0) =f (x), x ∈ R, (8.1b)
ut(x ,0) =g(x), x ∈ R. (8.1c)
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D’Alembert’s Solution for the Homogeneous Wave Equation
By the method of characteristics, the characteristic equation will
be

dx2 − c2dt2 = 0, (8.2)

which reduces to

dx + cdt = 0, dx − cdt = 0. (8.3)

Integrating (8.3), we obtain the following characteristics

x + ct = c1, x − ct = c2 =⇒ ξ = x + ct , η = x − ct . (8.4)

Evaluating the partial derivatives, we have

uxx = uξξ + 2uξη + uηη, utt = c2(uξξ − 2uξη + uηη). (8.5)

Substituting (8.5) into (8.1a) yields

−4c2uξη = 0 c ̸= 0
=⇒ uξη = 0 (8.6)
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D’Alembert’s Solution for the Homogeneous Wave Equation
Integrating with respect to η and ξ, we have

u(ξ, η) = ϕ(ξ) + ψ(η)

ξ = x + ct
η = x − ct
=⇒ u(x , y) =ϕ(x + ct)

+ ψ(x − ct),
(8.7)

where ϕ and ψ are (twice differentiable) arbitrary functions. This
is called the general solution of the wave equation.

Now applying the initial conditions (8.1b) and (8.1c), we obtain

u(x ,0) =f (x) = ϕ(x) + ψ(x), (8.8a)
ut(x ,0) =g(x) = cϕ′(x)− cψ′(x). (8.8b)

Integration of (8.8b) gives

ϕ(x)− ψ(x) =
1
c

∫ x

x0

g(ξ)dξ + K (8.9)

where x0 and K are arbitrary constants.
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D’Alembert’s Solution for the Homogeneous Wave Equation
Solving ϕ and ψ from (8.8a) and (8.9), we obtain

ϕ(x) =
1
2

f (x) +
1
2c

∫ x

x0

g(ξ)dξ +
K
2
, (8.10a)

ψ(x) =
1
2

f (x)− 1
2c

∫ x

x0

g(ξ)dξ − K
2
, (8.10b)

and the solution is given as

u(x , t) =
1
2
[f (x + ct) + f (x − ct)]

+
1
2c

[∫ x+ct

x0

g(ξ)dξ −
∫ x−ct

x0

g(ξ)dξ
]

=
1
2
[f (x + ct) + f (x − ct)] +

1
2c

∫ x+ct

x−ct
g(ξ)dξ

(8.11)

This solution is called the well-known d’Alembert solution of the
Cauchy problem for the one-dimensional wave equation.
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D’Alembert’s Solution for the Homogeneous Wave Equation

Example 27
Find the solution of the IVP

utt − c2uxx =0, x ∈ R, t > 0, (8.12a)
u(x ,0) = sin x , x ∈ R, (8.12b)
ut(x ,0) = cos x , x ∈ R. (8.12c)
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D’Alembert’s Solution for the Homogeneous Wave Equation
It follows from the d’Alembert solution that, if an initial displacement
or an initial velocity is located in a small neighborhood of some point
(x0, t0), it can influence only the area t > t0 bounded by two character-
istics x−ct =constant and x+ct = constant with slope ±(1/c) passing
through the point (x0, t0), as shown in Figure 1. This means that the
initial displacement propagates with the speed dx

dt = c, whereas the
effect of the initial velocity propagates at all speeds up to c. This infi-
nite sector R in this figure is called the range of influence of the point
(x0, t0).

Figure: The Range of Influence of the Point (x0, t0).
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D’Alembert’s Solution for the Homogeneous Wave Equation
According to (8.11), the value of u(x0, t0) depends on the initial data
f and g in the interval [x0 − ct0, x0 + ct0] which is cut out of the initial
line by the two characteristics x − ct =constant and x + ct =constant
with slope ±(1/c) passing through the point (x0, t0). The interval [x0 −
ct0, x0 + ct0] on the line t = 0 is called the domain of dependence of
the solution at the point (x0, t0), as shown in Figure 3.

Figure: The Domain of Dependence of the Solution at the Point
(x0, t0).
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D’Alembert’s Solution for the Homogeneous Wave Equation

Figure: The Domain of Dependence of the Solution at the Point
(x0, t0).

Since the solution u(x , t) at every point (x , t) inside the triangular
region D in this figure is completely determined by the Cauchy
data on the interval [x0 − ct0, x0 + ct0], the region D is called the
region of determinancy of the solution.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Now, we consider the Cauchy problem for the nonhomogeneous
wave equation

utt − c2uxx =h∗(x , t), x ∈ R, t > 0, (8.14a)
u(x ,0) =f (x), x ∈ R, (8.14b)
ut(x ,0) =g∗(x), x ∈ R. (8.14c)

By coordinate transformation y = ct , the problem is reduced to

uxx − uyy =h(x , y), x ∈ R, t > 0, (8.15a)
u(x ,0) =f (x), x ∈ R, (8.15b)

uy (x ,0) =g(x), x ∈ R. (8.15c)

where h ≡ −h∗

c2 and g ≡ g∗

c .
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation
Let P0(x0, y0) be a point of the plane and let Q(x0,0) be the point
on the initial line y = 0. Then the characteristics, x±y =constant
of (8.15a) are two straight lines drawn through the point P0 with
slopes ±1. Obviously, they intersect the x-axis at the points
P1(x0 − y0,0) and P2(x0 + y0,0), as shown in Figure 4.

Figure: The Triangular Region R.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation
Let the sides of the triangle P0P1P2 be designated by B0, B1
and B2, and let R be the region representing the interior of the
triangle and its boundaries B. Integrating both sides of equation
(8.15a), we obtain∫ ∫

R
(uxx − uyy )dxdy =

∫ ∫
R

h(x , y)dxdy . (8.16)

Now, by taking M := ux and N := uy (and, therefore, uxx = ∂N
∂x

and uyy = ∂M
∂y ), we apply Green’s theorem to obtain∫ ∫
R
(uxx − uyy )dxdy =

∫ ∫
R

(
∂M
∂x

− ∂N
∂y

)
dxdy

=

∮
B
(Ndx + Mdy)

=

∮
B
(uydx + uxdy).

(8.17)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = B0 ∪ B1 ∪ B2, we have three cases to consider:
▶ On B0: Note that, since x = x where x varies from

x = x0 − y0 to x = x0 + y0 and y = 0 (and, hence, dx = dx
and dy = 0), we have∫

B0

(uxdy + uydx) =
∫

B0

uydx

=

∫ x0+y0

x0−y0

uy (x ,0)dx .
(8.18)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = B0 ∪ B1 ∪ B2, we have three cases to consider:
▶ On B1: Note that, since y = −x + x0 + y0 and x varies from

x = x0 + y0 to x = x0 (and, hence, dy = −dx), we have∫
B1

(uydx + uxdy) =
∫

B1

(ux · (−dx) + uy · (−dy))

=

∫ (x ,y)=(x0,y0)

(x ,y)=(x0+y0,0)
(−du)

=u(x0 + y0,0)− u(x0, y0).

(8.19)

22 / 30 Gökhan Göksu, PhD MTM3502



D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since B = B0 ∪ B1 ∪ B2, we have three cases to consider:
▶ On B2: Note that, since y = x − x0 + y0 and x varies from

x = x0 to x = x0 − y0 (and, hence, dy = dx), we have∫
B2

(uydx + uxdy) =
∫

B2

(uxdx + uydy)

=

∫ (x ,y)=(x0−y0,0)

(x ,y)=(x0,y0)
du

=u(x0 − y0,0)− u(x0, y0).

(8.20)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

By (8.17), (8.18), (8.19) and (8.20), we have∮
B
(uydx + uxdy) =− 2u(x0, y0) + u(x0 − y0,0)

+ u(x0 + y0,0) +
∫ x0+y0

x0−y0

uy (x ,0)dx .
(8.21)

Combining (8.16), (8.17) and (8.21), we obtain

u(x0, y0) =
1
2
[u(x0 − y0,0) + u(x0 + y0,0)]

+
1
2

∫ x0+y0

x0−y0

uy (x ,0)dx − 1
2

∫ ∫
R

h(x , y)dxdy .
(8.22)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Since x0 and y0 are chosen arbitrarily, as a consequence, we
replace x0 by x and y0 by y and (8.22) becomes

u(x , y) =
1
2
[f (x − y) + f (x + y)] +

1
2

∫ x+y

x−y
g(ξ)dξ

− 1
2

∫ ∫
R

h(ξ, η)dξdη
(8.23)

and replacing y = ct , we have

u(x , t) =
1
2
[f (x − ct) + f (x + ct)] +

1
2c

∫ x+ct

x−ct
g∗(ξ)dξ

+
1
2c

∫ ∫
R

h∗(ξ, τ)dξdτ.
(8.24)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

The integration region R is a triangular region enclosed by t = 0
and characteristics so that it is named as characteristic triangle.

R = {(ξ, τ) | 0 ≤ τ ≤ t , x − c(t − τ) < ξ < x + c(t − τ)}(8.25)

Figure: The Triangular Region R.
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Therefore, (8.24) yields to

u(x , t) =
1
2
[f (x − ct) + f (x + ct)] +

1
2c

∫ x+ct

x−ct
g∗(ξ)dξ

+
1
2c

∫ τ=t

τ=0

∫ ξ=x+ct−cτ

ξ=x−ct+cτ
h∗(ξ, τ)dξdτ.

(8.25)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 28
Determine the solution of

utt − c2uxx = x , (8.26a)
u(x ,0) = sin x , (8.26b)
ut(x ,0) =x . (8.26c)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 29
Find the solution of the IVP

utt − c2uxx =0, t > 0, (8.28a)

u(x ,0) =x3, (8.28b)
ut(x ,0) =x , . (8.28c)
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D’Alembert’s Solution for the Nonhomogeneous Wave Equation

Example 30
Find the solution of the IVP

uxx − utt =1, (8.30a)
u(x ,0) = sin x , (8.30b)
ut(x ,0) =x . (8.30c)
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