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Cauchy Problem for the Wave Equation

Wave equations can also appear as solutions to physical phe-
nomena that are restricted to bounded regions. Initial data is
defined on the finite subinterval a ≤ x ≤ b of the line t = 0 and
the values of u and ux are defined at the endpoints x = a and
x = b.

Now, consider the following IVP-BVP:

utt − c2uxx =0, (0 ≤ x ≤ ℓ, t ≥ 0) (12.1a)
u(x ,0) =f (x), (0 ≤ x ≤ ℓ) (12.1b)
ut(x ,0) =g(x), (0 ≤ x ≤ ℓ) (12.1c)
u(0, t) =0, (t ≥ 0) (12.1d)
u(ℓ, t) =0. (t ≥ 0) (12.1e)
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Cauchy Problem for the Wave Equation

This problem physically corresponds to the vibrating string prob-
lem with to fixed endpoints. Since the system is homogeneous,
we may choose the solution of the form u(x , t) = X (x)T (t)
where X and T are the functions of x and t , respectively. Then,
we have

XT ′′ − c2X ′′T = 0 =⇒ T ′′

c2T
=

X ′′

X
= λ. (12.2)

Now, we have three cases to consider.
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:

▶ For λ > 0: In this case, we have two corresponding ODEs:

X ′′ − λX = 0, (12.3a)

T ′′ − λc2T = 0. (12.3b)

The characteristic equations and their roots for (12.3a) and
(12.3b), respectively, yields to the following

C(r) = r2 − λ = 0 ⇒ r1,2 = ±
√
λ

⇒ X (x) = c1e−
√
λx + c2e

√
λx (12.4a)

C(r) = r2 − λc2 = 0 ⇒ r1,2 = ±c
√
λ

⇒ T (t) = c3e−c
√
λt + c4ec

√
λt (12.4b)

which, in turn, yields to the solution

u(x , t) =
(

c1e−
√
λx + c2e

√
λx
)(

c3e−c
√
λt + c4ec

√
λt
)

(12.5)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:

▶ For λ > 0: Using (12.1d) to (12.5), we have

u(0, t) =
(
c1 + c2

)(
c3e−c

√
λt + c4ec

√
λt) = 0

⇒ c1 + c2 = 0,
(12.6)

and using (12.1e) to (12.5), we have

u(ℓ, t) =
(
c1e−

√
λℓ + c2e

√
λℓ
)(

c3e−c
√
λt + c4ec

√
λt) = 0

⇒
(
c1e−

√
λℓ + c2e

√
λℓ
)
= 0.

(12.7)

Since ∣∣∣∣ 1 1
e−

√
λℓ e

√
λℓ

∣∣∣∣ ̸= 0 (12.8)

the homogeneous system

c1 + c2 = 0 and c1e−
√
λℓ + c2e

√
λℓ = 0 (12.9)

has no solution.
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:

▶ For λ = 0: In this case, we have two corresponding ODEs:

X ′′ = 0, (12.10a)
T ′′ = 0. (12.10b)

The general solutions of (12.10a) and (12.10b) yields to

u(x , t) = (c1x + c2) (c3t + c4) (12.11)

Using (12.1d) to (12.11), we have

u(0, t) = c2 (c3t + c4) = 0 =⇒ c2 = 0, (12.12)

and using (12.1e) to (12.11), we have

u(ℓ, t) = (c1ℓ+ c2) (c3ℓ+ c4) = 0 =⇒ c1ℓ+ c2 = 0.
(12.13)

The system
c2 = 0 and c1ℓ+ c2 = 0 (12.14)

has no nontrivial solution for this case as well.
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:
▶ For λ < 0: In this case, by taking λ = −µ2,we have two

corresponding ODEs:

X ′′ + µ2X = 0, (12.15a)

T ′′ + λc2µ2 = 0. (12.15b)

The characteristic equations and their roots for (12.15a) and
(12.15b), respectively, yields to the following

C(r) = r2 + µ2 = 0 ⇒ r1,2 = ±iµ
⇒ X (x) = c1 cos(µx) + c2 sin(µx)

(12.16a)

C(r) = r2 + c2µ2 = 0 ⇒ r1,2 = ±icµ
⇒ T (t) = c3 cos(cµt) + c4 sin(cµt)

(12.16b)

which, in turn, yields to the solution

u(x , t) = (c1 cos(µx) + c2 sin(µx)) (c3 cos(cµt) + c4 sin(cµt))
(12.17)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:
▶ For λ < 0: Using (12.1d) to (12.17), we have

u(0, t) = c1 (c3 cos(cµt) + c4 sin(cµt)) = 0 ⇒ c1 = 0, (12.18)

and using (12.1e) to (12.18), we have

u(ℓ, t) = c2 sin(µℓ) (c3 cos(cµt) + c4 sin(cµt)) = 0
⇒ c2 sin(µℓ) = 0

⇒ µℓ = nπ =⇒ µ =
nπ
ℓ
, for n ∈ N.

(12.19)

Replacing µ = nπ
ℓ into the general solution, we obtain

u(x , t) =
∞∑

n=1

(
c3n cos

(
c

nπ
ℓ

t
)
+ c4n sin

(
c

nπ
ℓ

t
))

sin
(nπ

ℓ
x
)
.(12.20)

From (12.1b), we have

u(x ,0) =
∞∑

n=1

c3n sin
(nπ

ℓ
x
)
= f (x). (12.21)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:
▶ For λ < 0: Multiplying both sides of (12.21) with sin

(mπx
ℓ

)
and

integrating on [0, ℓ] yields to∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx

=
∞∑

n=1

c3n

∫ ℓ

0
sin
(nπ

ℓ
x
)
sin
(mπ

ℓ
x
)

dx

=− 1
2

∞∑
n=1

c3n

∫ ℓ

0

(
cos

(
(n + m)πx

ℓ

)
− cos

(
(n − m)πx

ℓ

))
dx

=− 1
2

∞∑
n=1

c3n

 sin
(

(n+m)πx
ℓ

)
(n+m)π

ℓ

−
sin
(

(n−m)πx
ℓ

)
(n−m)π

ℓ

∣∣∣∣∣
ℓ

0

=− 1
2

∞∑
n=1

c3n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)
.

(12.22)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:

▶ For λ < 0: Considering this result, we have two cases to
consider:

▶ For m ̸= n: We have

−1
2

∞∑
n=1

c3n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)
= 0.(12.23)

▶ For m = n: We have

−1
2

∞∑
n=1

c3n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)

=− 1
2

∞∑
n=1

c3n

(
− sin ((n − m)π)

(n−m)π
ℓ

)

=− 1
2

c3m (−ℓ) (as (n − m)π → 0)

(12.24)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:

▶ For λ < 0: Considering these two cases, we get∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx = −1

2
c3m(−ℓ)

⇒ c3m =
2
ℓ

∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx

(12.25)

Deriving (12.20) with respect to t , we have

ut(x , t) =
∞∑

n=1

cπn
ℓ

(
−c3n sin

(
c

nπ
ℓ

t
)
+ c4n cos

(
c

nπ
ℓ

t
))

sin
(nπ

ℓ
x
)
.

(12.26)

and from (12.1c), we obtain

ut(x ,0) =
∞∑

n=1

cπn
ℓ

c4n sin
(nπ

ℓ
x
)
= g(x). (12.27)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:
▶ For λ < 0: Similarly, multiplying both sides of (12.27) with

sin
(mπx

ℓ

)
and integrating on [0, ℓ] yields to∫ ℓ

0
g(x) sin

(mπx
ℓ

)
dx

=
∞∑

n=1

cπn
ℓ

c4n

(
−1

2

)∫ ℓ

0
−2 sin

(nπ
ℓ

x
)
sin
(mπ

ℓ
x
)

dx

=
∞∑

n=1

−cπn
2ℓ

c4n

∫ ℓ

0

(
cos

(
(n + m)πx

ℓ

)
− cos

(
(n − m)πx

ℓ

))
dx

=
∞∑

n=1

−cπn
2ℓ

c4n

 sin
(

(n+m)πx
ℓ

)
(n+m)π

ℓ

−
sin
(

(n−m)πx
ℓ

)
(n−m)π

ℓ

∣∣∣∣∣
ℓ

0

=
∞∑

n=1

−cπn
2ℓ

c4n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)
.

(12.28)
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Cauchy Problem for the Wave Equation

Now, we have three cases to consider:

▶ For λ < 0: Again, we have two cases to consider

▶ For m ̸= n: We have

∞∑
n=1

−cπn
2ℓ

c4n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)
= 0.(12.29)

▶ For m = n: We have

∞∑
n=1

− cπn
2ℓ

c4n

(
sin ((n + m)π)

(n+m)π
ℓ

− sin ((n − m)π)
(n−m)π

ℓ

)

=
∞∑

n=1

−cπn
2ℓ

c4n

(
− sin ((n − m)π)

(n−m)π
ℓ

)
=− cπm

2ℓ
c4m (−ℓ) (as (n − m)π → 0)

(12.30)
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Cauchy Problem for the Wave Equation
Now, we have three cases to consider:
▶ For λ < 0: Again from these two cases, we get∫ ℓ

0
g(x) sin

(mπx
ℓ

)
dx =

cπm
2

c4m

⇒ c4m =
2

cπm

∫ ℓ

0
g(x) sin

(mπx
ℓ

)
dx

(12.31)

Combining (12.20), (12.25) and (12.31), we have the particular
solution to the IVP-BVP (12.1a)-(12.1e):

u(x , t) =
∞∑

n=1

[(
2
ℓ

∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx

)
cos
(

c
nπ
ℓ

t
)

+

(
2

cπn

∫ ℓ

0
g(x) sin

(
nπx
ℓ

)
dx

)
sin
(

c
nπ
ℓ

t
)]

· sin
(nπ

ℓ
x
)
.

(12.32)
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Cauchy Problem for the Heat Conduction Problem

Suppose that, we have a rod with a length ℓ and the heat is
assumed to be distributed equally over the cross section at time
t . The surface of the rod is insulated, and therefore, there is no
heat loss through the boundary. The temperature distribution of
the rod is given by the solution of the IVP-BVP:

ut − κuxx =0, (0 ≤ x ≤ ℓ, t ≥ 0) (12.33a)
u(0, t) =0, (t ≥ 0) (12.33b)
u(ℓ, t) =0, (t ≥ 0) (12.33c)

u(x ,0) =f (x), (0 ≤ x ≤ ℓ) (12.33d)

15 / 22 Gökhan Göksu, PhD MTM3502



Cauchy Problem for the Heat Conduction Problem
Here, u(x , t) represents the heat at the position x and the time
t and κ is a thermal conductivity constant, which is determined
by experiments and depends on the material. Since (12.33a)
is homogeneous, we may seek for a solution of type u(x , t) =
X (x)T (t) with functions X and T which yields to

X ′′

X
=

T ′

κT
= −µ2. (12.34)

and this gives us two ODEs:

X ′′ + µ2X = 0, (12.35a)

T ′ + µ2κT = 0. (12.35b)

The BVs associated to (12.33b) and (12.33c) can be obtained

u(0, t) =X (0)T (t) = 0 =⇒ X (0) = 0, (12.36a)
u(ℓ, t) =X (ℓ)T (t) = 0 =⇒ X (ℓ) = 0. (12.36b)
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Cauchy Problem for the Heat Conduction Problem

From these BVs, the nontrivial solution for X can be obtained as

Xn(x) = c1n sin
(nπx

ℓ

)
, n ∈ N. (12.37)

On the other hand, the general solution of (12.35b) will be

Tn(t) = c2ne−( nπ
ℓ )

2
κt , n ∈ N. (12.38)

The general solution becomes

u(x , t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

cne−( nπ
ℓ )

2
κt sin

(nπx
ℓ

)
, (12.39)

where cn = c1nc2n.
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Cauchy Problem for the Heat Conduction Problem

The latter BV (12.33d) enables us to calculate the Fourier coef-
ficients (cn’s). To that aim, we first evaluate the following

u(x ,0) =
∞∑

n=1

cn sin
(nπx

ℓ

)
= f (x), (12.40)

and, then, multiply both sides of (12.40) with sin
(mπx

ℓ

)
and inte-

grating on [0, ℓ] yields to

∞∑
n=1

cn

∫ ℓ

0
sin
(mπx

ℓ

)
sin
(nπx

ℓ

)
dx

=

∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx .

(12.41)
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Cauchy Problem for the Heat Conduction Problem

Observing the identity1

∫ ℓ

0
sin
(mπx

ℓ

)
sin
(nπx

ℓ

)
dx =

{
0, if m ̸= n,
ℓ
2 , if m = n

(12.42)

and using it in (12.41), we have

cm
ℓ

2
=

∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx

⇒ cm =
2
ℓ

∫ ℓ

0
f (x) sin

(mπx
ℓ

)
dx

(12.43)

1Recall the “orthogonality of basis functions" discussion of last week. The
same implication can be revised by a simple variable change x ′ =

(
ℓ

2π

)
x .
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Cauchy Problem for the Heat Conduction Problem

In conclusion, the solution for the IVP-BVP (12.33a)-(12.33d) will
be

u(x , t) =
∞∑

n=1

(
2
ℓ

∫ ℓ

0
f (x) sin

(nπx
ℓ

)
dx
)

e−( nπ
ℓ )

2
κt sin

(nπx
ℓ

)
,

(12.44)
which is the required solution.
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Cauchy Problem for the Wave Equation [Exercises]

Exercise 32 (Cauchy Problem for Wave Equation)
Solve the following Cauchy problem:

utt − 4uxx =0, (0 ≤ x ≤ 1, t ≥ 0) (13.1a)
u(x ,0) = sin(2πx), (0 ≤ x ≤ 1) (13.1b)
ut(x ,0) =1, (0 ≤ x ≤ 1) (13.1c)
u(0, t) =0, (t ≥ 0) (13.1d)
u(1, t) =0. (t ≥ 0) (13.1e)

Solution:

u(x , t) = cos(4πt) sin(2πx)

+
∞∑

n=0

2
(2n + 1)2π2 sin((4n + 2)πt) sin((2n + 1)πx)

(13.4)
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Cauchy Problem for the Heat Conduction Problem [Exercises]

Exercise 33 (Cauchy Problem for Heat Conduction
Problem)
Solve the following Cauchy problem:

ut − 2uxx =0, (0 ≤ x ≤ 3, t ≥ 0) (13.5a)
u(0, t) =0, (t ≥ 0) (13.5b)
u(3, t) =0, (t ≥ 0) (13.5c)
u(x ,0) =x(3 − x), (0 ≤ x ≤ 3) (13.5d)

Solution:

u(x , t) =
72
π3

∞∑
n=0

1
(2n + 1)3 e−

(
(2n+1)π

3

)2
t
sin

(
(2n + 1)πx

3

)
(13.7)
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