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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method
Last week, we introduced the structural classification of PDEs
according to their linearity. By definition, a linear PDE is also a
semi-linear PDE, a semi-linear PDE is a quasi-linear PDE and
the nonlinear PDEs constitutes the general class for first order
PDEs. However, the converse implication does not hold. See
the following relations among the classes of first order PDEs.

FO Linear PDEs

FO Semi-Linear PDEs

FO Quasi-Linear PDEs

FO Nonlinear PDEs

Figure: The Relations among the Classes of First Order PDEs.
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

To this regard, we, first, present the Lagrange’s method for first order quasi-
linear PDEs which is also valid for first order linear and semi-linear PDEs.

Theorem
Recall the quasi-linear PDE

a(x,y,u)ux + b(x,y, u)u, = c(x,y, u). (1.12)
The general solution of (1.12) is of the form

@(n,§) =0 (2.1)

where ¢ is an arbitrary function of

n(x,y, u) =c1,
g(X,yv U) =02, (22)
ci,0 € R,
which form a solution of
ax dy au

a(x,y )~ b(x,y.u) _ c(x,y.u) (@3)
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Proof.

Since n(x, y, u) = ¢y is a solution of (2.3), the total derivative of n
an on on
= = —Ldu= 2.4
ade+ 8ydy+ 8udu 0 (2.4)

and (2.3) must be compatible. Therefore, we have

a(x,y, uynx + b(x,y, u)n, + c(x,y, u)n, = 0. (2.5)
Similarly, we can also obtain

a(x, y, u)éx + b(x, y, u)sy + c(x, y, u)éu = 0. (2.6)
Solving (2.5) and (2.6) for the functions a, b and ¢, we have

a(X7ya U) _ b(X7ya U) _ C(X7y7 U)
77y§u - 77u€y Nuéx — nxgu nxgy - 77y§x ’
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Proof (Continued).
Considering (2.1) and differentiating it partially with respect to x and y
yields

0 0 an ou 0 o0& du
a;j (J * 8Z<9x> T < v af:ax>
=y (nx + Pnu) + ¢e (€x + P&u) = 0, (2.82)
Jyp (877+8778u>+8g0<8§+8§8u)
on \dy ' duody o0& \dy Jdudy
=y (ny + qnu) + @¢ (§y + q€u) = 0. (2.8b)

Writing (2.8a) and (2.8b) as a system yields to

Nx +Pnu Ex+PE| |on| _ 0]
[nyﬂmu €y+q§u} { } a [0 =9
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Proof (Continued).
and a nontrivial solution for [¢,, (pg]—r can be obtained only in the
following case:

Nx + Py &x + P&u -0
Ny +qnu & + qu (2.10)

= (x + Pnu) (& + 9€u) — (& + PEu) (ny + qu) = O.
Arranging the terms in (2.10), we obtain
P (ny€u — muéy) + q (Muéx — 1x€u) = (Mx€y — Myéx) - (2.11)
From equations (2.7) and (2.11) implies
alx,y,u)ux + b(x,y,u)u, = c(x,y, u) (1.12)

which concludes the proof. O
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

A similar result can also be shown for first order linear and semi-
linear PDEs.

Corollary
Recall the linear PDE

a(x,y)ux + b(x,y)uy, + c(x,y)u=d(x,y) (1.8)

The general solution of (1.8) is of the form o of (2.1) where ¢ is
an arbitrary function of n and ¢ of (2.2) which form a solution of
ax dy du

axy)  bxy) dxy) —cxpu &2
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Corollary
Recall the semi-linear PDE

a(x,y)ux + b(x, y)u, = c(x, y, u) (1.10)

The general solution of (1.10) is of the form ¢ of (2.1) where ¢
is an arbitrary function of n and £ of (2.2) which form a solution

of d d d
X ly u
= = . 2.13
ax.y)  Bx.y)  c(x.y,0) (2-13)

Remark

Equating (2.3), (2.12) and (2.13) with dt, it is possible to obtain
the characteristic equations of first order quasi-linear, linear and
semi-linear PDEs, which were presented in (1.13), (1.9) and
(1.11), respectively. We will investigate it later in detail.
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Example 4
Find the general solution of the first order linear PDE

u(xp - yq) = y* — x? (2.14)
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Solutions of FO Linear, Semi-/Quasi-Linear PDEs: Lagrange’s Method

Example 5
Find the general solution of the PDE

X(X+y)p=y(x+y)g—(x—y)(2x+2y+u) (2.19)
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Integral Surfaces Passing Through a Given Curve

Recall the quasi-linear PDE
a(x, y, u)ux + b(x, y, u)uy = c(x,y, u) (1.12)

and let the parametric equations of the given curve be

x=x(t), y = y(t), u=u(t), t > 0. (2.33)
Let also
n(xayvu):olv S(Xayvu):CZ (234)
be any two solutions of the systems of the equations
ax ay du

a(x,y,u) _ b(x,y,u)  c(x,y,u)
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Integral Surfaces Passing Through a Given Curve

Then the general solution of (1.12) is

() =0 (2.1)

where ¢ is an arbitrary function. Since the integral surface has
to pass through (2.33), we obtain

n(x(1), y (1), u(t)) = c1, &(x(1), y(t), u(t)) = c2 (2.35)
subject to the condition that
(p(C1 R Cg) =0 (236)

Hence, the required integral surface can be obtained by elimi-
nating ¢ and ¢, from (2.34), (2.3) and (2.36).
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Integral Surfaces Passing Through a Given Curve

Example 6
Let us find the equation of the integral surface of the PDE

2y(u—3)p+ (2x — u)g = y(2x — 3) (2.37)

which passes through the circle z = 0, x° + y? = 2x.
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Integral Surfaces Passing Through a Given Curve

Example 7
Find the general integral of the PDE

(xX=yp+(y—x-ug=u (2.45)
and the particular solution through the circle

u=1, x>+y>=1. (2.46)
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Integral Surfaces Passing Through a Given Curve

Remark
In order to find the integral surface passing through a given
curve;
» The procedure generally starts by finding the
parametrization of the curve.
» Then, a relation between the constants is obtained from
parametrization.

» Latter, the particular solution can be obtained from the
constants obtained from the solution of the PDE.
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