1/12

MTM3502-Partial Differential Equations

Gokhan Goéksu, PhD

Week 9

TEYTU

Gokhan Goksu, PhD MTM3502



Second Order Linear PDEs: Classification

2/12

The general form of a second order linear PDE is given as

A(Xay)uXX + B(X7Y)ny + C(XJ/)Uyy

£ DY)+ Gy + Foopu=Goy) )

where the coefficients A, B, C, D, E, F and G are the functions
of x and y. The classification of a second order linear PDE is
suggested by the classification of the quadratic equation of conic
sections in analytic geometry. The PDE is said to be hyperbolic,
parabolic or elliptic at a point (xo, o) as

B?(Xo, ¥o) — 4A(X0, ¥0) C(Xo, ¥o) (5.2)

is positive, zero or negative.
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If (5.2) is positive, zero or negative at all points, then the PDE is
said to be hyperbolic, parabolic or ellyptic in a domain. In case
of two independent variables, it is always possible to reduce the
given equation into canonical form in a given domain, which is
not possible for several independent variables. Let us consider
the following transformation

fo(X,y), U:U(X,Y) (53)

with sufficiently smooth functions £ and . Note that, if the Jaco-
bian

_9(&:m)

ax,y)

is nonzero in the region, then the transformation is well-defined
and x and y can be determined uniquely from (5.3).

&x &y
Nix TNy

(5.4)
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Then, we have

Uy =Ugx + Uynx, Uy = Uy + Uyny,
Uxx :U&f)z( + 2Uep&xnx + U'qr]/r])z( + Ug&xx + Upnixx,
Uxy =Uge€x€y + Ugy(Exny + Eymix) + Upynxny

+ Uelxy + Upnxy,

2 2
Uyy =Uge€), + 2Ugy&yny + Unnmy + Uelyy + UnTlyy,

Substituting these values in (5.1), we obtain

A&, m)Uge + B (&, m)Ugy + C(&,m) Uy
+ D (& mug + EX(E,m)uy + FH(§,m)u = G*(&,m)
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where

A (&,m) =A(&m)EL + B(E, méxéy + C(& ),

B*(&,m) =2A(&,m)éxnx + B(&,n)(&xny + Eynx)
+ 20(57 U)fyﬁy,

C*(&.m) =A(& )1k + B(&,n)nxmy + C(& n)n5,

D*(&,m) =A(&,m)éx + B(&, m)éxy + C(&,m)Eyy (5.7)
+ D(&,m)éx + E(&, )&y,

E*(&,m) =A(& m)nxx + B, m)nxy + C(& m)myy
+ D(&,m)nx + E(& n)ny,

F*(&mn) =F(&mn), G*(&n) = G(£n)
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Note that, (5.6) has the same form as the original (5.1). There-
fore, we can say that the nature of the equation remains invari-
ant under such a transformation if the Jacobian does not vanish.
This lies on the fact that the discriminant does not change under
transformation

B*2(¢,m)—4A"(&,n)C*(&,m)

=J2(&,n)(B?(&,m) — 4A(&,n)C(&,m)) or
B?(x,y)—4A*(x,y)C*(x,y)

=J2(x,y)(B?(x,y) — 4A(x,¥)C(X,))

(5.8)
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Before we go further, we emphasize that we sometimes write
the functions by omitting the dependence of (x, y) or (£, n) which
can be clearly understood from the context. As an example, we
may write (5.8), in short as

B2 — 4A*C* = J3(B? — 4AC). (5.9)

The classification of (5.1) depends on the functions A, B and C
at a given point (x, y). We, therefore, may rewrite (5.1) as

and rewrite (5.6) as

A*Uge + B*ug,y + Cuyy = H*(§,m, U, Ug, Uy). (5.11)
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In mathematics, a canonical form of a mathematical object is a
standard way of presenting that object as a mathematical ex-
pression. Often, it is one which provides the simplest represen-
tation of an object and which allows it to be identified in a unique
way. In most fields, a canonical form specifies a unique rep-
resentation for every object, without the requirement of unique-
ness of the representation.

Considering a second order linear PDE, reducing a PDE into a
canonical form means that the second order terms of the PDE is
represented in terms of either ue, or use and u,, to represent the
cases B2 —4A*C* > 0, B2 —4A*C* = 0 and B2 —4A*C* < 0.
We, therefore, analyze the canonical forms in three subsections.
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We, firstly, consider the case that B2—4AC > 0. Note that, under
coordinate change with a non-vanishing Jacobian, the determi-
nant yields to B* — 4A*C* > 0 (See (5.9)). We have two cases
to obtain canonical forms of hyperbolic PDEs:

> Ax=C*=0and B* # 0,

» C*=—-A*#0and B* = 0.
Considering the case that A* = C* = 0 and B* # 0, we are able
to write the PDE in terms of ug,:

A" =ALE + Bty + CE& =0

&\ 2 (f)
Al = B> =
— <§y) + 5 +C=0,

C* =An% + Bnxny + Crj; = 0

2
— A<”X> +B(77X)+C=o.
Ny Ny
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Along the curves £ =constant and n = constant, we have % =
—g—; and % = —% (note that d§ = &xdx + §ydy = 0 and dnp =
nxdx +ny,dy = 0). From this fact and the roots of (5.12), we have

dy B++vVB?2-4AC
7 _ ) (5.13)
dx 2A

which are called as characteristic equations. These equations
are ODEs for families of curves in the xy-plane along which ¢ =
constant and n =constant and the integrals of these equations
are called the characteristic curves. The solutions, therefore,
may be written as

o1(x,y) = ¢1 and ¢o(X, y) = Cp, for ¢, Co are constants.(5.14)
Hence the transformations

£:¢1(Xay) andU:¢2(X>Y) (515)

will transform (5.10) into a canonical form.
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Since B2—4AC > 0, the integration of (5.13) yield to two real and
distinct families of characteristics. The equation (5.11) reduces
to

Uey = H, (5.16)

where H; = 4= (note that B* # 0). This form is called the first
canonical form of the hyperbolic PDEs.

Similarly, for C* = —A* # 0 and B* = 0, we are able to write the
PDE in terms of uge and u,,

Uee — Upyy = Ho (5.17)

which is called the second canonical form of the hyperbolic PDEs
where H, = 1 (note that A* # 0).
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Example 18
Find canonical form of the PDE

y2UXX - X2Uyy == 0 (518)
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