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4.1 DEFINITION OF THE DUAL PROBLEM

The dual problem is an LP defined directly and systematically from the primal (or orig-
inal} P model. The two problems are so closely related that the aptimal solution of
one problem automatically provides the optimal solution to the other.

In most LP treatments, the dual is defined for various forms of the primal depend-
ing on the sense of optimization {maximization or minimization), types of constraints
(=, =, or =), and orientation of the variables (nonnegative or unrestricted). This type

of treatmenl 1s somewhat confusing, and for this reason we offer a single definition that
automatically subsumes all forms of the primal.

Our definition of the dual problem requires expressing the primal problem in
the equation form presenied in Section 3.1 (all the constraints are equations with
nonnegative right-hand side and ail the variables are nonnegative}.



To show how the dual problem is constructed, define the primal in equation form
as follows.

Maximize or minimize z = g_:,«:,x,-
subject to

n
20,,1’} = b;,i = 1,2,....,"?‘!‘

=
x;20,j=1,2,...,n

The vanables x;, j = 1, 2,..., n, inciude the surplus, slack, and artificial variables, if any.

Table 4.1 shows how the dual problem is constructed from the primal. Effectively,
we have

1. A dual variable is defined for each primal (constraint) equation.
2. A dual constraint is defined for each primal variable.

3. The constraint (column) coefficients of a primal variable define the left-hand-
side coefficients of the dual constraint and its objective coefficient define the
right-hand side.

4. The objective coefficients of the dual equal the right-hand side of the pnmal con-
straint equations.



TABLE 4.1 Construction of the Dual from the Primal
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X X, X > 2
. PRIV c‘j‘_r
Dual variables <) Gy .‘k.ff..-“?;’;fﬁ- c
e ')."" Al =
Ll sets
¢ a a2 ';;,z" !I;:;: Ay
U ) AT S
e % S B %
: | %’;*j‘u‘.* 2
)‘m ﬂ-) an2 ¥ ﬁ:?ﬁ‘é :: am
‘d“ , e \""}3.:"
Jth dual
constraint

The rules for determining the sense of optimization (maximization or minimization),
the type of the constraint (=, =, or =), and the sign of the dual variables are summarized
in Table 4.2. Note that the sense of optimization in the dual is always opposite to that of the
primial. An casy way to remember the constraint type in the dual (i.e,, = or = )isthatif
the dual objective is nunimnization (i.., pointing down), then the constraints are all of the
type = (i.e,pointing up). The opposite is true when the dual objective is maximization.

TABLE 4.2 Rules for Constructing the Dual Problem

Dual problem

Primal problem

objective® Objective Constraints type Variables sign
Maximization Minimization = Unrestricted
Minimization Maximization = Unrestricted

“All primal constraints are equations with nonnegative right-hand side, and all the variables are nonnegative.



Example 4.1-1

Primal

Maximize ¢ = Sxy + 12x; + dxy
subject (o
It+213+ IJSID
2¥1 = X3+ 33y =8
Xyy A9, Xy z 0




Example 4.1-2

Primal

Minimize z = 15x, + |2x,
subiect Lo
X, + 2x, 2 3
'l!'} - 4.].'? =5
x,xn=0




Example 4.1-3

Primal

Maximuize z = Sx; + Gy
subject to
X +2xy =23
Xy + 5.-'1.'2 =3
dx, + Tx, = 8
x) unrestricted, x4 = 0

Dual Problem Minimize z = 5y + 3w + 8y
subjectto vy —pm+4n = S
—htm 42 S
2 + S+ Tmw= 6
_ﬁ pr_] G '
n= 0
Vi, ¥, ¥ unrestricted
The first and second constraints are repiaced by an equation. The general rule in this case is
that an unrzstncted primal variable always corresponds 10 an equality dual constraini. Con-
versely, a primal equation produces an unrestricted dual variable, as the first primal consiraint
demonstrates. !



Summary of the Rules for Constructing the Dual, The general conclusion from the
preceding examples is that the varniables and constraints 1n the primal and duoal
problems are defined by the rules in Table 4.3_1t is a good exercise to verify that these
explicit rules are subsumed by the general rules in Table 4.2,

TABLE 4.3 Raules for Constructing the Dual Problem

Maximization problem Minimization problem
Constraints Variables
> = =0
- - =0
= = Unrestricted
Variabies Constraints
=( = =
=0 = =
Unrestnicted = ==

Note that the table does not use the designafion primal and dual. What matters
here is the sense of optimization. If the primal 1s maximization, then the dual is mini-
mization, and vice versa.



4.2 PRIMAL-DUAL RELATIONSHIPS

Changes made in the original LP model will change the elements of the current opti-
mal tablean, which in turn may affect the optimality and/or the feasibility of the cur-
rent solution. This section introduces a number of primal-dual relationships that can be
used to recompute the elements of the optuimal simplex tableau. These relationships
will form the basis for the economic interpretation of the LP model as well a8 for post-

optimality analysis.

4.2.2 Simplex Tableau Layout

Frgure 4.1 gives a schematic representation of the starting and general simplex
tableaus In the starting tableau, the constraint coefficients under the starting vanables
form an identity matrix (all main-diagonal elements equal 1 and all off-diagonal ele-
ments equal zero). With this arrangement, subsequent iterations of the simplex tableau
generated by the Gauss-Jordan row operations (see Chapter 3) will modify the ele-
rments of the identity matrix to produce what i1s known as the inverse matrix. As we will
see in the remainder of this chapter, the inverse matrix is key to computing all the ele-
ments of the associated simplex tableau.



Figure 4.1 Schematic representation of the starting and general simplex

tableaus
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Objective z-row { =
p
1 0 0
Constraint d 0 1 0 B
columns . 0 -
0 0 1
\
[dentity matrix
(Starting tableau)

Starting variables
Objective z-row { _

P

Constraint

Inverse matrix =
columns

(General iteration)



4.2.3 Optimal Dual Solution

The primal and dual solutions are so closely related that the optunal solution of either
problem directly yields (with little additional computation) the optimal solution to the
other. Thus, in an LP mode! in which the number of variables 1s considerably smaller
than the number of constraints, computational savings may be realized by solving the
dual, from which the primal selution s determined automatically. This result follows
because the amount of simpiex computation depends largely (though not totally) on
the number of constraints (see Problem 2, Set 4.2¢).

This section provides two methods for determining the dual values. Note that the
dual of the dual is itself the primal, which means that the dual selution can also be used
to vield the optimal primal solution automatically.

Method 1.
( Optimal value o f) i Optimal primal z-cnel‘ﬁc:mt of starting variable x;
dual variable y; / . -
“ e y Original objective coefficient of x;
Method 2.

Row vector of . )
/ Optimal values . N . Optimal primal
= original objective coefficients X .
of dual variables . . , ) inverse
of opuimal primal basic variables

The elements of the row vector must appear in the same order in which the basic van-
ables are listed in the Basic column of the sunplex tableau.



Example 4.2-1
Consider the following LP:
Maximize z = S.:!.'] + 12x; + dx4

subject to

I1+211+ 135 IO
11'1 - X2 + 3.1?3 = 8
Xy, X3, X3 = 0
To prepare the problem for solution by the simplex method, we add a slack x4 in the first

constraint and an artificial R in the second. The resulting primal and the associated dual prob-
iems are thus defined as follows:

Primal Drual
Maximize z = 5x, + 12x, + dxy ~ MR Minimize w = 10y, + 8y,
subject to subject 10
x + 2x; + xy + x, = 10 BH+2m=s
X = x,+ 3n + K =8 2y = =12
Ky Ly X3, X3, Rz=10 wt+in=4
¥ =0

¥ = —M (= y unrestricted) .




TABLE 4.4 Optimal Tableau of the Primal of Example 4.2-1

Basic X1 X X3 X4 R Solution
3 29 2 Y
< 0 0 5 3 —s T M 343
I 2 1 12
- 0 1 =5 5 E 5
2
] 1 0 : ! : 2

Table 4.4 provides the optimat primal tableau.

We now show haow the aptimal dual values are determined using the two methods described
al the star! of thes section,

Method 1. [n Table 4.4, the starting primal variables xy and R uniguely correspond o the dual
variables ¥ and y,, respectively. Thus, we delermine the optumum dual solution as follows:

Starting peimal basic variables Xy R
z-equation coefficients % -E + M
QOriginal objective coefficient 0 -M

Dual variables Yi Je

Optimal dual values P+0=% “2 M+ (M) = -3




Method 2. The optimal inverse matyix, highlighted under the starting vanables x; and R, 13
given in Table 4.4 as

First, we note that the optimal primal variables are listed in the tableau in row arder as x, and
then x,. This means that the elements of the original objective coefficients for the two variables
must appeéar in the same order-—namely,

(Orginal objective coefficienis} = (Coelficient of x;, coefficient of .rl}
= {12, 3}
Thus, the optimal dual values are computed as



Primal-dual objective valves. Having shown how the optimal dual values are
determined, next we present the relationship between the primal and dual objective
values. For any pair of feasible primal and dual solutions,

/ Objective value in the - / Objective value in lhe,)
knmimization problem s  \ runimization problem

At the optimum, the relationship holds as a strict equation. The relanonship does not
specify which problem is primal and which 1s dual. Only the sense of optimization
(maximization or mimimization) is imporiant in this case.

The optimum cannot occur with z strictly less than w (1.€., z < w) because, no
matter how close z and w are, there is always room for improvement, which contradicts
optimality as Figure 4.2 demonstrates.

Figure 4.2 Relationship between maximum z and minimum w

Optimum

Maximize z / Minimize w

b /,
‘-h‘_ -.f



Example 4.2-2

in Example 4.2-1,(x; = 0,x, = 0,x; = §) and {3 = 6, 3, = 0) are feasible primal and dual so-
lutions. The associated values of the objective functions are

2
105

2= 5x, + 12x, + 4xy = 5(0) + 12(0) + 4(%)
w = 10y + 8y, = 10(6) + 8(0) = 60

Thus, z (= 10%) for the maximization problem (primal) is less than w (= 60) for the minimization
problem (dual). The optimum value of 2 (= 54§] falls within the range (102, 60)



