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4.4 ADDITIONAL SIMPLEX ALGORITHMS

In the simplex algorithm presented in Chapter 3 the problem starts at a (basic) feasible
solution. Successive iterations continue to be feasible until the optimal is reached at
the lastiteration. The algorithm is sometimes referred to as the primal simplex method.

This section presents two additional algorithms: The dwal simplex and the
generalized simplex. In (he dual simplex, the LP starts at a better than optimal infeasible
(basic) solution. Successive iterations remain infeasible and (better than) optimal until
feasibility 15 restored at the last iteration. The generalized stmplex combines both the
primal and dual simplex methods in one algonthm. It deals with problems that start
both nonoptimal and infeasible. In this algorithm, successive iterations are associated
with basic feasible or infeasible (basic) solutions. At the final iteration, the solution be-
comes optimal and feasible (assuming that one exists).

All three algorithms, the primal, the dual, and the generalized, are used in the
course of post-optimal analysis calculations, as will be shown in Section 4.5.

4.4.1 Dual Simplex Algorithm

The crux of the dual sunplex method is 1o start with a better than optimal and infeasible
basic solution. The optimality and feasibility conditions are designed to preserve the op-
timality of the basic solutions while moving the solution iterations toward feasibility.



Dual feasibility condition. The leaving variable, x,, is the basic variable having the

most negative value (ties are broken arbitrarily). If all the basic variables are
nonnegative, the algorithm ends.

Dual optimality condition. Given that x, is the leaving variable, let T; be the reduced
cost of nonbastc variable x; and «,; the constraint coefficient in the x,-row and x;-column

of the tableau. The entering variabie is the nonbasic vanable with a,; < 0 that corre-
sponds to

min {lg—ff;L @,; < 0}
Nonbasic x;

(Ties are broken arbitranily.) If «,; = ¢ for all nonbasic x;, the problem has no fea-
sible solution.

To start the LP optimal and infeasible, lwo requireméents must be met:

1. The objective function must satisfy the optimality condition of the regular
simplex method (Chapter 3).

2. All the constraints must be of the type (=).



The second condition requires converting any (=) to (=) simply by multiplying
both sides of the inequality (=) by —1. If the LP includes (=) constraints, the equation
can be replaced by two inequalities. For example,

X+ x=1
1s equivalent to

1+t oS LYy tel

|X1 el G g R Y~ "'ll

After converting all the constraints to (=), the starting sofution is infeasible if at least
one of the right-hand sides of the inequalities is strictly negative.

or

Example 4.4-1 Minimize z = 3x, + 2x;, + x3
subject to

35+ Xyt =23
=-3x +3x+ %26
X+ xo+x3x<3

X, X5, X3 =0

In the present example, the furst two inequalities are multiphied by —1 to convert them to
(=) constraints. The starting tablean is thus given as: é



Basic X Xx; X3 X4 X5 Xg Solution
0

z -3 -2 -1 Q ¢ 0
&4 -3 -1 -1 | 0 0 =3
L5 3 -3 -] 0 1 0 “'"ﬁ
x5 1 1 1 0 0 1 3

The tableau 15 optimal because all the reduced costs in the z-row are = {)
(G} = =3,0; = =2,¢3 = =1,% = 0,55 = 0,5 = 0)- It is also infeasible because at [east one of
the basic variables is negative (xs = —3, x5 = —0, x5 = 3).

According to the dual feasibility condition, x5 (= —6) is the leaving variable. The next table
shows how the dual optimality condition 15 used to determine the enténng variable

ji=1 j=3
MNonbasic variable X X3
Z-TOW {EI] -3 =1
X5 TOW, ey 3 -1
Ratio, 2], ag; < 0 — 1




The ratios show that x; is the entering vartable. Notice that a nonbasic variable x; 15 a candidate

for entering the basic solution only if its «,, is strictly negative, This is the reason x, is excluded in
the table above.

The next tableau is obtained by using the familiar row operations, which give

Basic Xy X3 Xxs Xy Xs X5 Solution
2 -5 0 -3 ¢ -3 0 4
X, -4 0 - 1 -t 0 -1
X, -1 1 % 0 —% 0 2
Ratic 3 — e 2 _

tyy
[

The preceding tableau shows that xy leaves and x4 enters, thus yielding the following
tableau, which is both optimal and feasible:



Basic X X3 iy X4 Xg Xg Solution
z ~3 0 0 -t -1 0 :
Xy 6 0 1 -3 3 0 3
x5 ~3 1 0 ! -1 0 :
%g -2 0 0 L 0 I 0

Notice how the dual simplex works. In all the iterations, optimality 15 maintained (all re-
duced costs are =0). At the same time, each new iteration moves the solution toward {easibility.

At iteration 3, feasibility is restored _fur the first ime and the process ends with the opumal fea-
sible solution givenas x; =0, x; = 5, x, = g, and z = g,



4.4.2 Generalized Simplex Algorithm

The (primal) simplex algorithm in Chapter 3 starts feasible but nonoptimal. The dual
simplex in Section 4.4.1 starts (better than) optimal but infeasible. What if an LP model
starts both nonoptimal and infeasible? We have seéen that the primal simplex accounts
for the infeasibility of the starting solution by using artificial vaniables. Similarly, the
dual simplex accounts for the nonoptimality by using an artificial constraint (see Prob-
lem. 3, Set 4.4a}. Although these procedures are designed to enhance awfornatic compu-
tations, such details may cause one to lose sight of what the simplex algorithm truly
entails—namely, the optimum solution of an LP is associated with a comer pont {or
basic) solution. Based on this observation, you should be able to “tailor” your own sim-
plex algorithm for LP models that start both nonoptimal and infeasible. The following
examptle illustrates what we call the generalized simplex algorithm.

Example 4.4-2

Consider the LP model of Problem 4{a), Set 4.44. The model can be put in the following
tableau form in which the starting basic solution {x3, xs, Xs) is both nonoptimal (because x,
has & negative reduced cost) and infeasible (because x, = ~8). (The first equation has been
multiplied by =1 to reveal the infeasibility directly in the Solution column.)



_I] + 2:2 - ZI’} = E
Maximize z = 2x,
=Xy + Xs + X1 5 4

subject to
2.1'1 - x3 + 4.1‘.'3 = 10
II# IL Ia a 0
Basic X, Xq Xy X, X Xg Solution
z 0 0o -2 0 0 0 0
X - | 1 )] 1 0 4
X 2 -1 4 0 Q 1 10

We can solve the problem without the use of any artificial variables or artificial constraints
as follows: Remove infeasibility first by applying a version of the dual simplex feasibility condi-
tion that selects x, as the lecaving variable. To deternunée the eéntering variable, all we need 15 a
nonbasic variable whose constraint coefficient in the x.-row is strictly negative. The selection can
be done without regard to optimality, because it is nonexistent at this point anyway {compare
with the dual optimality condition). In the present example, x, has a negative coeflicient in the
x4-1ow and 15 selected as the entering vanable. The result is the following tableau: 12



Basic X X3 X3 X, Xs X Solution
z 0 0 =2 0 0 0 0
X, =L S -1 0 ¢ 4
Xs -3 0 2 : ] 0 0
X ? 0 -2 0 I 14

The solution in the preceding tableau 1s now feasible but nonoptimal, and we can use the
primal simplex to determine the optimal solution. In general, had we not restored feasibility
the preceding tableau, we would repeat the procedure as necessary unti] feasibility is satisfied or
there is evidence that the problem has no feasible solution (which happens if a basic variable is
negative and all its constraint coefficients are nonnegative). Once feasibility is established, the
next step s (0 pay attention to optimality by applying the proper optimality condition of the pri-
mal simpicx method.

Remarks. The essence of Example 4.4-2 i< that the simplex method is not rigid. The literature
abounds with vanations of the simplex method (e.g., the primal-dual method, the symmetrical
method, the criss-cross method, and the multiplex method) that give the impression that ¢ach
procedure 1s different, when, m effect, they all seek a corner point solution, wath a siant toward
automated computations and, perhaps, computational efficiency.



