Lecture 8
Transportation Model and Algorithm

Balancing the transportation model
Determination of the starting solution
[terative computations of the transportation algorithm



[Transportation Model|

The transportation model is a special class of hinear programs that
deals with shipping a commadity from sources (e.g., factories) to destinations (e.g.,
warehouses). The objective is to determine the shipping schedule that minmmuzes the
total shipping cost while satisfying supply and demand limits. The application of the
transportation model can be extended to other areas of operation, including inventory
control, employment scheduling, and personnel assignment.

[5.1  DEFINITION OF THE TRANSPORTATION MODEL |

The general problem is represented by the network in Figure 5.1. There are m
sources and n destinations, each represented by a node. The arcs represent the
routes linking the sources and the destinations. Arc (§, j) joining source i to destina-
tion j carries two pieces of information: the transportation cost per unit, ¢;;, and the
amount shipped, x;;. The amount of supply at source { is ¢; and the amount of de-
mand at destination j is b;. The objective of the model is to determine the unknowns
%y that will minimize the total transportation cost while satistying all the supply and
demand restrictions.



Figure 5.1 Representation of the transportation model with nodes and arcs
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Example 5.1-1

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two mapor distnibution
centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.

The trucking company in charge of traosporting the cars charges 8 cents per mile per car.
The transportation costs per car on the different routes, rounded to the closest dollar, are given

in Table 5.2.



TABLE 5.1 Mileage Chart TABLE 5.2 Transportation Cost per Car
Denver Miami Denver (1) Miami (2)
Los Angeles 1000 2690 Los Angeles (1) $80 $215
Detroit 1250 1350 Detroit (2) $100 $108
New Orleans 1275 850 New Orleans (3) $102 $68
The LP mode] of the problem is given as
Minimize z = 80xq;, + 215z + 10xy, + 108xy; + 10225, + 68x3;
subject to
Xy + X2 = 1000 (Los Angeles)
Xy + X33 = 1500 (Detroit)
+ x3; + xp = 1200 (New Oreleans)
X1 + x5 + X3 = 3100 (Denver)
Xy T+ X3z + Xy = 1400 (Miami)
xy20,i=1,23,]=1,2




These constraints are all equations because the total sapply from the three sources (= 1000 +
1500 + 1200 = 3700 cars) equals the total demand at the two destinations (= 2300 + 1400 =

3700 cars ).

The LP model can be solved by the simplex methad. However, with the special structure of
the constraints we can soive the problem more conveniently using the transportation tablcau

shown in Table 5.3.

TABLE 5.3 MG Transportation Model

Denver Miami
Los Angeles 80 213
X11 X12
Detroit 100 108
X21 X22
New Orleans 102 68
X31 X32
Demand 2300 1400

Supply
1000
1500

1200

Figure 5.2 Optimal solution
of MG Auto model
1000

1500

1200

New Orleans

The optimal solution in Figure 5.2 (obtained by TORA!') calls for shipping 1000 cars from
Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from
New Orleans to Miami. The associated misimum {ransportation cost is computed as 1000 x $80 +

1300 X 5100 + 200 % $108 + 1200 x $68 = $313 200
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Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy

destination to restore balance.
Example 5.1-2

In the MG model, suppose that the Detroit plant capacity i1s 1300 cars (instead of 1500). The 10tal
supply (=3500 cars) is less than the total demand {= 3700 cars), meaning that part of the de-

mand at Penver and Miami will not be satisfied,

Because the demand exceeds the supply, a dummy source (plant) with a capacity of 200 cars
{= 3700 — 3500) is added to balance the transportation model. The unit transportation costs

from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 gives the balanced model together with its aptimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of

salisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shoriage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miamu cell will prevent shortage at Miami. Of course, we cannot
use this “tnick™ with all the destinations, because shortage must occur somewhere in the system.

6



TABLE 5.4 MG Model with Dummy Plant

Detvet Miaiii] Supply TABLE 5.5 MG Model with Dummy Destination
80 215 Denver Miami Dummy
Los Angeles 30 215 0
1000 1000
100 108 Los Angeles
Detroit 1000 1000
1300 1300 100 108 0
102 68 Detroit
New Orleans 900 200 400 1500
1200 1200 102 68 0
5 . 0 0 New Orleans
ummy Flant 12 12
20 24 Demand 1900 1433 400 "
Demand 2300 1400
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The case where the supply exceeds the demand can be demonstrated by assuming that the
demand at Denver is 1904 cars only. In this case, we need to add a dummy distribution center to
“receive” the surplos supply. Again, the unit transportation costs to the durmnmy distribution cen-
ter are zero, unless we require a factory to “ship out” compietely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution
shows that the Detroit plant will have a surplus of 400 cars.



PROBLEM SET 5.1A2

1. True or False?
(a) To balance a transportation model, it may be necessary 1o add both a dummy source
and a dummy destination.
(b} The amounts shipped to a dummy destination represent surplus at the shipping
source.
{c} The amounts shipped from a dummy source represent shortages at the recewving
destinations.
2. In each of the following cases, determine whether a dummy source or a dummy destina-
tion must be added 10 balance the model.
(a) Supply:a, = 10,a;, =5, =4,a,=6
Demand: by = 10,0y =5, b= 7,0, =9
(b) Supply:ay = 30,a;, = 44
Demand: b, = 25,8; = 30, by = 10
3. InTable 5.4 of Example 5.1-2, where a dumuny plant is added, what does the solution
mean when the dummy plant “ships™ 150 cars to Denver and 50 cars to Miami?

‘4. In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the De-
troit plant must ship out aff its production. How can this restriction be implemented in
the model?



*6. Three electric power plants with capacities of 25, 40, and 30 million kWh supply electrici-
ty to three ciues. The maximum demands at the three ctties are estimated at 30, 35, and 25
million kWh. The price per million kWh at the three cities is given in Table 5.6.

During the month of August, there is a 20% increase in demand at each of the three
cities, which can be met by purchasing electricity from another network at a premium
rate of $1000 per million kWh. The network is not linked to city 3, however. The utility

company wishes to determine the most economical plan for the distribution and pur-
chase of additional energy.

(a) Formulate the problem as a transportation model.
(b) Determunc an optimal distribution plano for the utility company.
(c) Delermine the cost of the additional power purchased by each of the three cities.

7. Solve Problem 6, assuming that there is a 10% power transmission loss through the net-
work.

TABLE 5.6 Price/Million kWh for Problem 6

City

I 2 3

1 $600 $700 $400
Plant 2 $320 $300 $350
3 $500 $480 $450
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[5.3  THE TRANSPORTATION ALGORITHM |

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe-
cial structure of the transportation model to orgamze the computations in a more con-
venient form.

Suvmmary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering varuable from among all the nonbasic vanables. 1f the optimality
condition 1s satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feastbility condition of the simplex method to determine the leaving
variabie from among all the current basic variables, and find the new basic so-
tution. Return to step 2.
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Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of gramn from three silos to four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transportaticn costs
per truckload on the different routes are summarized in the transportation mode! in Table 3.16.
The unit transportation costs, ¢;;, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule x; between silo £ and mill j

(F=1,2,3j=1,234).

TABLE 5.16 SunRay Transportation Model
Mill
1 2 -+ Supply
10 2 20 11
1
X11 X12 X13 X14 15
12 i 9 20
Silo 2
X21 X2 X23 X4 25
3 4 14 16 18
X3 X3 X33 X34 10
Demand S 15 15 15
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5.3.1 Determination of the Starting Solution

A general transportation model with s sources and r destinations has m + # constraint
equations, one for each source and each destination. However, because the transporta-
tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n — 1 independent constraint equa-
tions, which means that the starting basic solution consists of m + » — 1 basic variables.
Thus, in Example 5.3-1, the starting solution has 3 + 4 — 1 = 6 basic variables.

The special structure of the transportation problem aliows securing a nonartifi-
cial starting basic solution using one of three methods:

1. Northwest-corner method
2. Least-cost method

3. Vogel approximation method

The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that @ better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwesi-corner
method involves the least amount of computations

12



Northwest-Corner Method. The method starts at the northwest-corner cell {route)} of
the tableau (variable x,,).

Step 1.

Step 2.

Step 3.

Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or column. If both a row and a
column net 1o zero simultancously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out row (column).

If exactly one row or column js left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

TABLE 5.17 North-West Corner Starting Solution

1 2 3 - Supply

10 2 20 |

1 5 —>» 10 15

I

12 * 7 9 20

2 i — 25

I

- 14 16 * 18

3 10 10

Demand 5 15 15 15 13




Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution
in Table 5.17.The arrows show the order in which the allocated amounts are generated.
The starting basic solution is

Xy = 35,12 = 10
Xog = 5, X993 =15, x99 = 5
Xy = 10
The associated cost of the schedule is
=5 X 10+ X2+5XTH1ISX9+5Xx20+10x 18 = §520
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Least-Cost Method. The least-cost method finds a better starting solution by

concentrating on the cheapest routes. The method assigns as much as possible to the

cell with the smallest unit cost (ties are broken arbitrarily). Next, the satisfied row or

column is ctossed out and the amounts of sapply and demand are adjusted accordingly.

If both a row and a column are satisfied sitnultaneously, only one is crossed out, the
saine as in the northwest-corner method. Next, lock for the uncrossed-out cell with
the smallest unit cost and repeat the process unul exactly one row or column is left
uncrossed out.

TABLE 5.18 Least-Cost Starting Solution

2 3 - Supply
10| (start) 2 20 1
1 15 0 15
/ d
12,/ 11 7 9| |ena) 20
2 / P 10 25
¥ // 14 16 M‘ 18
3 5 5 10
Demand 5 15 15 15
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Example 5.3-3

The least-cost method 15 applied 10 Example 5.3-1 1n the following manner:

L. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
throuph {1,2) 15 xy; = 15 truckloads, which happens to satisfy both row 1 and column 2 1-
multaneously. We arbitrarily ¢ross out column 2 and adjust the supply inrow 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost { = $4). Assign x4, = 3, and cross out
column 1 because 1t s satisfied, and adjust the demand of row 310 10 — 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckioads to cell (2, J),

0 truckloads to celi (i, 4), 5 truckloads to cell (3, 4), and 10 truckloads to cell {2, 4}
(verify!),

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allpcations are made. The starting soiufion (consisting of ¢ basic variables) is
i3 = 15, x4 = 0, X3 = 135, x99 = 10, x5y = 3, %35 = 5. The associated objective value 13

=13 X2 +0X 11 +15X9+10X20+ 5 x4 +5 %18 = §475
The quality of the least-cost starting solution 15 better than that of the northwest-
corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus §520

in the northwest-corner method).
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Vogel Approximation Method (VAM). VAM is an imnproved verston of the least-cost
method that penerally, but not always, produces better starting solutions.

Step 1.

Step 2.

Step 3.

For each row (column}, determine a penalty measura by subtracting the
smallest unit cost element in the row {column) from the next smallest unit
cost element in the same row {column).

Identify the row or column with the largest penaliv. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se-
lected row or column. Adjust ithe supply and demand, and cross out the satis-
fied row or column. If a row and 2 column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (columun) is assigned
zero supply (demand).

(2) I exactly one row or column with zero supply or demand remains un-
crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed
out, determine the basic vanables i the row (column) by the least-cost
method. Stop.

(cj If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determane the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

17



Example 5.3-4

VAM 15 applied to Example 5.3-1. Table 5.19 computes the first set of penalties.

Because row 3 has the jargest penalty (= 10) and cell {3, 1) has the smallest unit cost in that
raw, the amount 5 is assigned to xy. Column 1 s now satisfied and must be crossed out. Next,
new penalties are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty (= 9). Hence, we assign the maximum
amouni possible to cell (1,2), which yields xj; = 15 and simultanecusly satsfies both row 1 and
column 2, We arbitrarily cross out colurnn 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty (= 11), and we as-
sign Xy = 13, which crosses out column 3 and leaves 10 units in row 2. Cnly column 4 is left, and
it has a positive supply of 15 units. Applying the least-cost method to that column, we successively
assign x4 = 0, xay = 5, and x5, = 10 (verify!). The associated objective value for this solution 15

2=15X24+0X11+15X9+10%X20+5 x4+ 5%18=3§475

‘This solution happens to have the same objective value as in the least-cost method.

18



TABLE 5.19 Row and Column Penalties in VAM

1 2 3 - Row penalty
10 2 20 14 10 — 2 = 8
1 15
12 7 9 20 9 -7 =2
2 25
4 14 16 18 14 — 4 =10
3 5 10
5 15 15 15
Column penalty 10 — 4 T=2 16— 9 18 = 11
=6 = = =7
TABLE 5.20 First Assignment in VAM (x3; = 5)
1 2 3 - Row penalty
10 2 20 11 -
1 15
e 7 9 20 2
z 25
3 4 14 16 18 2
5 10
5 15 15 15
Column penalty — 5 7 7

19
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PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-corner, least-cost, and Vogel
methods for each of the following models:

*{a) (b} (€}
U] 2 16 1 2 6 | 7 5 1 g |12
2 1 517 0 4 7 k2 2 4 0 (14
P 4 317 3 1 5 11 3 & 7] 4
5 5 10 10 10 10 9 10 11

| 5.3.2 Iterative Computations of the Transportation Algurithml

After determining the starting solution {using any of the three methods in Section 5.3.1),
we use the following algonthm to determine the optimum solution:

Step 1. Use the simplex aptimality condition to determine the entering variable as the
current nonbasic variable that can improve the solution. If the ﬂptlmallt}r con-
dition 135 satisfied, stop. Otherwise, go to step 2.
Step 2. Determine the feaving variabie using the simplex feasibility condition. Change
the basis, and return to step 1.
The optimality and feasibility conditions do not involve the familiar row opéra-

tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations, 20



Example 5.3-5

Solve the transportation model of Example 53-1, starting with the northwest-comer solution.

Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex-
ample 5.3-2.

TABLE 5.21 Starting Iteration

1 2 3 4 Supply

) 10 2 20 k)

5 10 15
. 12 7 9 20

5 15 5 25
4 14 16 18

-+ 10 10

Demand 5 15 15 15
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The determination of the entéring variable from among the current nonbasic vanables
(those that are not part of the starting basic soiution) is done by computing the nonbasic coeffi-
cients in the z-row, using the method of multipliers (which, as we show in Section 3.3.4, is rooted
in LP duality theory).

in the method of multiphers, we associaie the multipliers «; and ¥; with row ¢ and column ;
of the transportalion tableau. For each current basic variable x;, these multipliers are shown i
Section 5.3 4 to satisfy 1he following equations:

21
u; + v = &, for each basic x;



As Table 5.21 shows, the starting solution has 6 basic vanables, which leads te 6 equations 1a 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily setting any
u; = 0, and then solving for the remainung variables as shown below.

Basic vaniable  (u, v) Equation Solution
Xy u, + vy =10 Setw, =0—=wv, =10
Xz Wy + vy = 1 w =0—=vy, =2
X by + vy =7 v =2=u; =35
Xay by + ¥y = i =35—v;, =4
Yag Hy + vy = 20 Wy = 5= vy = 15
X uy + vy = 18 ¥ = 15—u;,=13

To summarize, we have
Hy — ﬂ,u; = 5.!!3 =3
=105, =25 =4,9,=15
Next, we use i, and v; to evaluate the nonbasic variables by computing

u; + v; — ¢, for each nenbasic x;;

22



The results of these evaluations are shown in the [ollowing table:

Nonbasic variable a + v — ¢y
13 HI+'I"3"'E|3="]+4-2“=--16
X4 HI+P4"E:|4-'|]+15-11-4
L Mt —oy =3+ H0-12=3
*31 Uy T vy —cy =3+ 1H00-4=9
= iy + ¥ —tp=3+2-14=-9
*u by*vi=—cp =3+4=-16=-9

The preceding information, together with the fact that w; + v, — ¢ = 0 for each basic x;;, is
actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic  x, g Y4 Xy o Xy X Xy o X Wifyts Xy X33 X3
I‘:.::__'I"Iﬁ;_.r::!
Z ¥ ¥ —16 4 3 I 0 0 wr 9!.:.;-;{" -4 -9 4
i

Because the transportation model seeks 10 minimize cost, the entering variable is the one hav-
ing the most pasitive coefficient in the z-row. Thus, x,, is the entering variable. 23



The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meanung that it is not necessary really to write the (i, v)-equations explicitly.
Instead, we start by setting u; = 0.8 Then we can compute the v-values of all the columns that
have basic vanables in row 1—namely, v; and 2. Next, we compute ki based on the (i, v)-equation
of basic xy;. Mow, given i3, we can compute v and v,. Finally, we determine i, using the basic
equation of xy3. Once all the w's and v's have been determined, we can evaluate the nonbasic
variables by computing «; + v — ¢y for each nonbasic x;;. These evaluations are shown in
Table 522 in the boxed southeast corner of each ceill.

TABLE 5.22 Iteration 1 Calculations

v, = 10 vy =2 v; =4 vy = 15 Supply
10 2 20 11
u =0 5 10 15
—16 -
12 7 9 20
u =5 5 15 5 25
3
4 14 16 18
u; =3 10 10
9 9 =8

Demand 5 15 15 15
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Having identified x4, as the entering variable, we need to determune the leaving variable

Remember that if xq; enters the solution to become basic, one of the curreat basic variables must
teave as nonbasic {at zero level).

The selection of x4; as the entering variable means that we want to ship through this route
because it reduces the total shipping cost. What 15 the most that we can ship through the new
route? Observe in Table 522 that if route (3, 1) ships € units (i.e., Xy, = 8}, then the maximum
value of 8 15 determined based on two conditions.

1. Supply limits and demand requirements rematn satished.
2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of 4 and the leaving vanable in the fol-
lowing manner. First, construct a ¢losed loop that starts and eads at the entering variable cell, (3,
1). The loop consists of connected horizontal and verrical segments only {no diagonals are al-
lowed).? Except for the entering variable cell, each corner of the closed loop must coincide with

a basic variable. Table 5,23 shows the loop for x3;. Exactly one loop exists for a given entering
vanable.

Mext, we assign the amount # to the entenng vaniable cell (3, 1}. For the supply and demand
limits to remain satisfied, we must alternate between subtracting and addinp the amount @ at the
successive cormers of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise ar counterclockwise direction). For 8 = 0, the new values of the variables then re-
main nonnegative if

25



TABLE 5.23 Determination of Closed Loop for x3;

v1 =10 vy =4 vy =15 = 1> Supply
10 2 20 11
up =0 S~ =pe== 10+ 15
- I + A 16 4
12 7 9 20
u =15 S—0 = | 5+6 25
' 3 IS + A
Y 4 14 16 {18
us =3 s G e » 10-6 10
+ | 9 9 919 =
Demand 5 15 15 15
I11=S_HEU Xp= 5—60=0 xy = 10-620

The correspondiag maximum value of § is 3, which gceurs when both x;, and xy reach zero level.
Because only one current basic variable must leave the basic solution, we ¢an choose either x|,
OT Xy, s the leaving variable. We arbitrarily choose xy; to leave the solution.

The selection of x3; {= §) as the entering variable and x,; as the leaving variable requires
adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unit shipped through route (3, 1) reduces the shipping cost by
$9 (= us + v, — cy;), the total cost associated with the new schedule is $9 X 5 = 545 less
than in the previous schedule. Thus, the new cost is $520 — $45 = §475, 26



TABLE 5.24 [Iteration 2 Calculations

v =1 Vy = 2 v; = 4 vy = 15 Supply
10 7 20 11
u, =0 15 — @ —----- e -0 15
9= A “16|+ i [ 4
12 P T 9 Y 20
Uy = 5 | I (O 10— 6 25
_6 + —
4 14 16 18
Uy = 3 N 5 10
-9 -9
Demand 5 15 15 15
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Giiven the new basic solution, we repeat the computation of the multipliers 4 and v, as Table 5.24
shows. The entenng vanable is xy.. The closed loop shows that x4 = 10 and that the leaving

variable 1§ x4
27



TABLE 5.25 TIteration 3 Calculations (Optimal)

B = =3 T = 2 th = 4 Vg4 = 11 Supply
10 2 20 11
u, =0 5 10 15
=13 —16
12 7 9 20
U, = 5 10 15 25
~10 —4
4 14 16 18
us; =7 S5 S 10
—D —3
Demand 5 15 15 15
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The new solution, shown in Table 5.25, costs $4 < 10 = $40 less than the preceding one,
thus yielding the new cost $475 — $40 = $435. The new u; + v; — ¢y are now negative for ail
nonbasic x;. Thus, the solution in Table 5.25 1s optimal.

From silo To mull Number of truckloads From sile To mull Number of truckloads
2 5 2 3 15
4 10 3 l 5
2 10 3 4 5

Optimal cost = §435 . 28




PROBLEM SET 5.3B

1. Consider the transportation models in Table §.26.
{a) Use the northwest-corner method (o lind (he starting solution.
(b) Develop the terations that lead to the optimum solution.

TABLE 5.26 ‘Transportation Models for Problem 1

(1) (ii) (iii)
$0 $2  $1| 6 $10 $4  $2| 8 — 83 $5| 4
$2 $1 $5( 9 2 $3 %4 | 5 $7 %4 89| 7
$2 %4  $3| 5 $1. $2  $0| 6 $1. $8  $6 | 19
5 5 10 7 6 6 5 6 19

TABLE 5.27 Data for Problem 2

$5 $1 $7 | 10
6 $4 S0 | 80
$3 $2 $5 | 15

75 20 50
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Develop the iterations that lead to the optimum solution.

Reference: H.A.Taha, Operations Research: An Introduction, Prentice Hall; 9th edition, Singapore, 2010. 29



