Lecture 5
Special Cases in the Simplex Method

Degeneracy
Alternative optima
Unbounded solutions
Nonexisting (or infeasible) solutions



|3.5 SPECIAL CASES IN THE SIMPLEX METHDD'

This section considers four special cases that arise in the use of the simplex method.

1. Degeneracy

2. Alternative optima

3. Unbounded solutions

4. Nonexisting {(or infeasible) solutions

Our interest in studying these special cases is twofold: {1) to present a theoretical

explanation of these situations and (2) to provide a practical interpretation of what
these special results could mean in a real-life problem.

3.5.1 Degeneracy

in the application of the feasibility condition of the simplex method, a tie for the mni-
mum ratio may occur and can be broken arbitrarity. When this happens, at least one basic
variable will be zero in the next iteration and the new solution is said to be degenerate.

There is nothing alarming about a degenerate solution, with the exception of a
small theoretical inconvenience, called eycling or circling, which we shall discuss short-
Iy. From the practical standpoeint, the condition reveals that the model has at least one
redundant constrainf. To provide more Insight mto the practical and theoretical im-
pacts of degeneracy, a numeric example 15 used.
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Examplz 3.5-1 (Degenerate Optimal Solution)
Maximize z = 3x; + %y

subject to

x1+4I1:58
Il'['zﬁzﬁ:.-d'
I],Igaﬂ

Given the slack variables x4 and xy, the following tableaus provide the simplex rterations of
the problem:

[teration Basic x X3 X X Solution, .
i 2 =3 -0 0 0 {0 £
x4 enters ' 1 4 ! 0 B domneic
% leaves X, 1 ﬂ 4 solution y
1 z -3 0 ? 0 18 .
1, enlers X % 1 : 0 2 p cl;lgure 3.7 .
egeneracy in
| 1 1 tf "ﬁ 1?1
Taceves i 1 0 2 S i Example 3.5-1
2 z 0 0 i : 18
(optimum) K f 1 i - 2
X, i 0 -1 2 '*niﬁ
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PROBLEM SET 3.5A
2. Consider the following LP:

Maximize z = 3x, + 2x;
subject to
4x, - x, =8
4x; + 32, < 12
4x; + x, = 8

X, % =0

{a) Show that the associated simplex iterations are temporarily degenerate (you may
use TORA for convenience).

(b) Verify the result by solving the problem graphically (TORA’s Graphic module can
be used here).






3.5.2 Alternative Optima

When the objective function is parallel to a2 nonredundant binding constraint (i.e., a
constraint that is satisfied as an equation at the optimnal solution), the objective
[unction can assume the same optimal value at more than one solution point, thus
giving rise to alternative optima. The next example shows that there is an infinite
number of such solutions. [t also demonstrates the practical significance of encoun-
tering such solutions.

Example 3.5-2 (Infinite Number of Solutions)

Maximize z = 2x, + 4dx,
subject 1o
0tix=35
nt =4

X, x3 = 0

Figure 3.9 demaonstrates how altternative optima can arise in the LP model when the abjec-
tive function 1s paratle] to a binding constraint. Any point on the line segmeny BC represents an
alternative optimum with the same objective value z = 10.

The iterations of the model are given by the following tableaus.



Feration Basic X, Xy Iy Xy Solutior

{ z -2 -4 0 Q 0
x; enlers X5 i 2 1 0 5
x3leaves Xy 1 1 0 1 4
1 {optimum) . HE o 20 o 10
¥, enters Xy ! 1 : 0 2
x, leaves Xy }i 0 —% 1 %

2 z 0 0 2 AL 1w

(altemative optimum) Xs 0 1 1 =1 1

Xy 1 L - P
Figure 3.9
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LP alternative optima in Example 3.5-2



Iteration 1 gives the optimum solution x, = 0, x; = %, and z = 10, which coincides with
point & 1n Figure 2.9. How do we know from this tabteau that alternative optima exist? Look at
the z-equation coeflicients of the nonbasic variables in iteration 1. The coefficient of nonbasic x;
15 zerd, indicating that x, can enter the basic solution without changing the value of z, but caus-
ing 4 change in the values of the variables. lteration 2 does just that—letting x; enler the basic
solution and forcing x4 10 leave. The new solution point occurs at Clx; = 3, x; = 1,z = 10).
(TORA’s Merations option allows determining one alternative oplimum at a time.)

The simplex method determines only the Uwo corner ;mimﬁ B and C. Mathematically, we
can determine all the points (=, x5} on the line segment 8C as a nonnegative weighted average

of ponts £ and . Thus, given
B X = ﬂ Ly = i

Cxy =3, 5,=1

then all the poinis on the hine segment BC are given by

Fi=al0) + (1 —a)(3) =3 - 3a

i;=a(§]+[1-a}(1]=-1+§a}'“£“51

When a = 0, (%), ¥;) = {3,1), which is point C. When &« =1,(X, X;) = ([} ) which (s
point 8. For values of a between 0 and 1, (X, X;) lies between 8 and C.



Remarks. In praciice, aliernative opiima are useful because we can choose from many solu-
rions without experiencing deterioration in the objective value. For instance, in the present ex-
ample, the soluton at £ shows that activity 2 only is at a positive level, whereas at C both
activities are positive. If the example represents a product-mix situation, there may be advan-
tages in producing twa products rather than one to meet market compstition. In this case, the so-
lution at € may be mors appealing.

| PROBLEM SET 3.58 |

*1. For the following LP,identify three alternative optimal basic solutions, and then write a
general expression for all the nonbasic allernatve optima comprising these three basic
solutions.

Maximize z = x; + 2x; + 3u;
subject to
Xy + 2xo + 30y = 10
x; + x =5
X, =1
Xy, kg, Xy = 0

Nore: Although the problem has more than three alternative basic solution optima,
you are only required to identify three of them. You may use TORA for
convenience. 9



2,

Solve the following LP:
Maximize 2 = 2xy — X3 T 3x;

subject 1o

A

10
2xy — Xy + 3x; = 40

Xy = Xp + 5x4

Xy, Xp, X3 = 0

From the optimal tableau, show that all the alternative aptima are nat corner points
{Le., nonbasic). Give a two-dimensional graphical demonstration of the type of solu-

tion space and objective function that will produce this result. (You may use TORA
for convenience.)

For the following LP, shaw that the optiroal solation is degenerate and that none of the
alternative solutions are corner points (you may use TORA for convenience}.

Maximize z = 3x; + x,
subject to
x; + 2x, =5
X1+ xg— ;=2
Taxy + 3xy — 5x3 = 20

Xy, ¥p, X3 = 0 10



|3.5.3  Unbounded Solution|

In some LP models, the values of the variables may be increased indefinitely without
violating any of the constraints—meaning that the solution space i1s unbothded in at
least one variable, As a result, the objective value may increase {maximization case) or
decrease (minbmization case) indefinitely. In this case, both the selution space and the
optimum objective value are unbounded.

Unboundedness points to the possibility that the model is poorly constructed.
‘The most hkely irregulanty in such modeis 1s that one or more nonredundant con-
straints have not been accounted for, and the parameters {constants) of some con-
straints may not have been estimated correctly.

The following examples show how unboundedness, in both the solution space
and the objective value, can be recognized in the simplex tableau.

Example 3.5-3 (Unbounded Objective Value)

Maxamize z = 2x; + x,
subjectto  x; — x; = 10
2x, = 40

X, X3 = 0
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Starting Iteration

Basic x, TPaEES x; xg Solution
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In the starting tableau, both x, and x, have negative z-equation coefficients. Hence either

one can improve the solution. Because x; has the most negative coefficient, it is normally select-
ed as the entering variable. However, alf the constraint coefhcients under x, (1.e., the denomina-
tors of the ratios of the feasibility condition) are negative or zero. This means that there is no
leaving variable and that x; can be increased indefinitely without violating any of the constraints
(compare with the graphical interpretation of the minimum ratio in Figure 3.5). Because each
unit increase in x; will increase z by 1, an infinite increase in x; leads to an infinite increase in 2.
Thus, the problem has no bounded solution. This result can be seen in Figure 3.10. The solution
space is unbounded in the direction of x,, and the vslue of z can be increased indefinitely.
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| PROBLEM SET 3.5C|

1. TORA Experiment Solve Exampie 3.5-3 using TORA's [t€ratioas option and show that
even though the solution starts wath r; as the entering variable (per the optimality condi-
tion), the simpiex algorithm will point eventually to an unbounded solution.

Boasc Xi X2 Sq S2
'__ z ~2 .y o o | &
| s, | o | 0 o
S2 2 o 0 | 90
_4 - -3 2 o 120
X; i ~) [ o 10 )
_Sa 0 ? -2 1 {eo
- 2 0 (2 f/‘:—i ’f 3/2 50
X) | o | (—1?7/ /2 2o
X2, 0 | . /7}///; 1 /2 {O




*2. Consider the LP:
Maximize z = 20x; + 10x, + x4
subject to

3.-1-':1 — 311 + SI3 SD

X + Igiln

IA

Xy — X9 +4x3 =20
H 2 3
I],IZ,I3EU

(a} By inspecting the constraints, determine the direction (x,, x3 or x;) in which the so-
lution space is unbounded.

{b) Without further computations, what can you conclude regarding the optimnm objec-
tive value?

() l-.v"(z. 2 (b Oé/'catlvi ol i i toenelo
;éb : Secomet. Cack it ereain
;/c/ } = .Srﬂ»fﬁ'n'ﬁoaa unbruneod Xy smereante £ by fo
A e e direclion’ X,
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[3.5.4 Infeasible Solution |

LP models with inconsistent constraints have no feasible solution. This situation can
never occur if alf the constraints are of the type = with nonnegative right-hand sides
because the slacks provide a feasible solution. For other types of constraints, we use ar-
tificial variables. Although the artificial variables are penalized in the objective func-
tion to force them to zero at the optimuwm, this can occur onfy if the model has a
feasible space. Otherwise, at least one artificial variable will be positive 1n the optimum
iteration. From the practical standpoint, an infeasible space points to the possibility
that the model 15 not formulated correctly.

Example 3.5-4 (Infeasible Solution Space)
Constder the following LP:

Maximize z = 3x; + 2a,
subject 1o
2x 0+ xm = 2
3x) + 4 = 12
XL a =0

Using the penalty M = 100 for the artificial vanable &, the following tableaux provide the

simplex iterations of the model. -



Iteration Basic X, iy Xy X3 R Solution

0 Fi —303 —-402 100 0 ¢ =1200

X5 eniers X4 2 1 { I o 2

Xy leaves 4 3 4 =] 0 1 12

1 ) 201 0 100 402 v =340

{psendo-optimum) X 2 i { 1 1l 2
G _ B _ ST
SR 5 {) 1 4 1 A

Optimum iteration 1 shows that the artificial variable R is positive {= 4), which indicates
that the problem is infeasible. Figure 3.11 demonstrates the infeasible solution space. By altowing

the artifimal variable to be positive, the simplex method, in essence, has reversed the direction of
the inequality from 3x; + 4x; = 12 to 5x;, + 4x;, = 12 (can you explain how?), The result is
whalt wa may call a psendo-optimal solution.

—

-~ L/

Psuedo-optima
solution

Figure 3.11

- Infeasible solution of Example 3.5-4
16




| PROBLEM SET 3.5D |

*1. Toolco produces three types of tools, T1, 72, and T3. The tools use two raw materials, M1
and M2, according to the data in the {ollowing table:

Number of units of raw materials per tool

Faw material Ti T2 13
Ml 3 5 6
M1 5 3 4

The available daily quantities of raw materials M1 and M2 are 1000 urits and 1200 units,
respectively. The marketing depariment informed the production manager that according
1o their research, the daily demand for all three tools must be at least 500 units Will the
manufacturing department be abie to satisfy the demand? If not, what is the most Toolco
can provide of the three tools?

X, = nambor of wmils o T1 X, + SXa +6Xz #S,

= /oog

))?:Wg%gr—? SK;+3X7_¥4X3 ?":Z =/Z200

) 3-—‘W %Amdq ?73 X, 4 X + X .,,_..5:3-,!-;{3: 500

N | X X Xe S, 50 08, Bs 20

3)_(,+5/\’7_.+ 6X3 =< /000 12720 ;)‘a;ﬁ:g j_.f .
SX) + 3% + 4X3 <1200 Oplizmun bbudioni Forr TORR T3 =5 47 wld o o difiiancy
x’+',\’z'+.x3 = Soo Pﬁ__ r-za\s_ . ?‘ -?QS-M,%WFPM
X5 X‘z) X3 >0 | 3

C&n&f«,’wdﬂ S00-~- 2285
= 275 trwly



2. TORA Experiment. Consider the LP model

subject ta

Xga X3, %3 = 0

1.11'|" Il+ Ay

Maximize z = 3xy + 2xy + 3y

=2

3x + 4x; + 2x, = 8

Use TORA's Tterations = M:Method to show that the optimal solution includes an arti-
ficial basic variable, but at zero level. Does the problem have a fearible optimal solution?

&cw,?zoulz W

Lblan, T
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Reference: H.A.Taha, Operations Research: An Introduction, Prentice Hall; 9th edition, Singapore, 2010.



