Lecture 7/
Theory of LP

Solving systems with more variables than equations
Matrix representation of a standart LP
Getting a basic solution
Theory of optimality and feasibility conditions
Some basic theorems and their proofs



Solving Systems with More Variables than Equations

Suppose now that A € R™*" where m < n. Let b € [R™. Then the equation:

(3.46) Ax=h

has more variables than equations and i1s underdetermined and i1f A has full row rank then
the system will have an mfinite number of solutions. We can formulate an expression to
describe this mfinite set of solutions.

Sme A has full row rank, we may choose any m linearly mdependent columns of A

corresponding to a subset of the variables, say x;,,...,7; . We can use these to form the
matrix

(347) B=[A,---A,]

from the columns A ,..., A, of A sothat B is invertible. It should be clear at this point

that B will be mvertible precisely because we've chosen m linearly mdependent column
vectors. We can then use elementary column operations to write the matrix A as:

(3.48) A = [B|N]

The matrix N 1s composed of the n — m other columns of A not in B. We can similarly
sub-divide the column vector x and write:

(3.49) [BIN] Eﬂ —b



where the vector xp are the variables corresponding to the columns in B and the vector xy
are the variables corresponding to the columns of the matrix N,

DEFINITION 3.46 (Basic Variables). For historical reasons, the variables in the vector
xp are called the basic variables and the variables in the vector xn are called the non-basic

variables.
We can use matrix multiplication to expand the left hand side of this expression as:
(3.50) Bxp+Nxn=Db

The fact that B 1s composed of all linearly independent columns implies that applying Gauss-
Jordan elimination to 1t will yield an m x m identity and thus that B 1s mvertible. We can
solve for basic variables xp 1n terms of the non-basic variables:

(3.51) xp=B"'b—- B 'Nxn

We can find an arbitrary solution to the system of linear equations by choosing values for
the variables the non-basic variables and solving for the basic variable values using Equation

3.51.

DEFINITION 3.47. (Basic Solution) When we assign xn = 0, the resulting solution for x
1s called a basic solution and

(3.52) xp=B7'b



ExXAMPLE 3.48. Consider the problem:

T
(3.53) [1 2 3} :c; _ [7] Other basic solutions could be formed by creating B
o 4 5 6 BE
|3 out of columns 1 and 3 or columns 2 and 3.

Then we can let 3 = 0 and:
1 2]
4 5

We then solve!:
—19
. r| oo [7] [FR
a5 1] =27 |5 = |2

EXERCISE 38. Find the two other basic solutions in Example 3.48 corresponding to

92 3 |1 3
B:[r 6} and B—L 6}

2

(3.54) B = [

In each case, determine what the matrix N is. [Hint: Find the solutions any way you like.
Make sure you record exactly which z; (i € {1,2,3}) is equal to zero in each case.]



Matrix representation of a standart LP

* Consider the following standart LP problem:
max z = c'x
s.t. Ax=0Db,

x 2 0.

Getting a Basic Feasible Solution

To get a basic solution rewrite the linear program in terms of the
basis where B is the basis of A:

A=[BN] ,c=[cgcylT, x =[xz %\]", Xz € R™, xy € R™™

max z = [cg Cy) [Xg X )T
s.t. [BN] [xgx,]"=b
Xg, Xy 2 0.

Ax=Bxz+Nx,\=b
, Xy =0, x; =B1b



* Algebraically manipulating the program we
can solve for x; :

Algebraically manipulating the program we can solve for zp:

Brp4+Nzxzy = b
Ip = B_]':h —N:y)
Then rearranging o'z
[ f [}
CTr = CpTp+CyIn

= B '(b— Nzn) + iy Xn
= {.'}}B_ ' — {;}}B_ : Nzy + f.‘f-.‘r:é';-.,r

— :.;]—E [_:_;i—'['.'_ii'].l'_ii

g



where:

We can now see that:

So to test optimality we can check:

zg = cgB™'b
z; = gB'A; ,jeEN

mazr ¢'r = zg — Z (25 — ;)4
J

Ej—ﬂj:_:'ﬂjﬁ‘"jE;w



3. The Simplex Algorithm
Suppose we have a basic feasible solution x = (xg,xn). We can divide the cost vector

c into its basic and non-basic parts, so we have ¢ = [cg|en]?. Then the objective function
becomes:

(5.10) c'x = chxp + chixn

We can substitute Equation 5.8 into Equation 5.10 to obtain:
(5.11) c'x=cg (B'b—B 'Nxn) + cnxn = cgB7'b + (e — cgB7'N) xpy

Let 7 be the set of indices of non-basic variables. Then we can write Equation 5.11 as:

(5.12)  z(zy,....z,) = cyB'b+ Z (c; —epB A z;
JjeTd

Consider now the fact z; = 0 for all j € 7. Further, we can see that:

0z

- fo—
G}Tj

(5.13) c; —cpBTIA



This means that if ¢; — CEB_IA_j > 0 and we increase x; from zero to some new value,
then we will increase the value of the objective function. For historic reasons, we actually
consider the value CEB_lA.j — ¢, called the reduced cost and denote 1t as:

. 0z _
(5.14) — Zj — Cj = CEE lA.j —C;

p— _‘:II
T 7
Ei':cj

In a maximization problem, we chose non-basic variables x; with negative reduced cost to
become basic because, in this case, dz/dz; is positive.

Assume we chose x;, a non-basic variable to become non-zero (because z; —¢; < 0). We
wish to know which of the basic variables will become zero as we increase x; away from zero.
We must also be very careful that none of the variables become negative as we do this.

By Equation 5.8 we know that the only current basic variables will be affected by in-
creasing x;. Let us focus explicitly on Equation 5.8 where we include only variable z; (since
all other non-basic variables are kept zero). Then we have:

(5.15) xp =B 'b—B Az,

Let b = B~ 'b be an m x 1 column vector and let that a; = B_lﬁ,j be another m x 1
column. Then we can write:



Let b= [by,...b,]! and a; = [aﬂ .., @;,, |, then we have:

— —_— —

[ rp, ] E_:"l @jl by — @, x;
(5.17) I:gﬂ _ brz B i b_:jﬂ v by —@j,x;
| x ém_ b | | D) | | b — Tj,, 25|
We know (a priori) that b, >0fori=1.....m. Ifa;, <0, then as we increase z;, b — —a;, =0

no matter how large we make x;. On the c:th::-r hand, if @;, > 0, then as we Increase x; we

know that b; — a;,r; will get smaller and eventually hit zero. In order to ensure that all
variables remain non-negative, we cannot increase x; beyond a certain point.

For each i (i = 1,...,m) such that @;, > 0, the value of z; that will make zp, goto 0 can
be found by Dbservmg that.

(5.18) zp, = b; —aj,x;
and if zp, = 0, then we can solve:
b;

&'j.

T

(5.19) 0=0b; —G;r; = z; = =

Thus, the largest possible value we can assign r; and ensure that all variables remain positive
18
. N
(5.20) min{—:i=1,...,manda;, >0
-EEJ'.
T
Expression 5.20 1s called the minimum raio test. We are interested in which index i 1s the
minimum ratio. 10
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Suppose that in executing the minimum ratio test, we find that z; = by /@;j,.. The variable
z; (which was non-basic) becomes basic and the variable zp, becomes non-basic. All other

basic variables remain basic (and positive). In executing this procedure (of exchanging one
basic variable and one non-basic variable) we have moved from one extreme point of X to

another.

THEOREM 5.6. If z; —¢; = 0 for all j € J, then the current basic feasible solution is
optimal.

EXAMPLE 5.9. Consider the Toy Maker Problem (from Example 2.3). The linear pro-
gramming problem given in Equation 2.8 is:

[ max z(xy,Ts) = Tx; + 69
st. 3ry + 10 < 120

T, + 275 < 160

r < 35

ry >0

x9 = 0

We can convert this problem to standard form by introducing the slack variables s, s

and s

11



(max z(xy,rs) = Tr) + 6xo
s.1. 31’-’1 T Ty + 81 = 120
4 T + 219 + 59 = 160

T1+33=35

\ Ty, T2, 81, 82,83 = ()

which yields the matrices

o o
6 T 3 1 1 00 120
c= |0|] x= |5 A=11 2 01 0} b= |160
0 S 1 00 01 35
0 S3
We can begin with the matrices:
1 0 0 3 1
B=101 0] N=|1 2
0 0 1 L 0

In this case we have:

51 T U 7
Xp = | S92 KN=[1] cp = |0 CN=|:]
0

53



120 301
and B'b=[160] B'N=[1 2
35 10

Therefore:

chB'b=0 chfB'N=[0 0] cfB'N—cx=[-7 —6]

Using this information, we can compute:
chB™'A | —c; =T
chB'A, —cy = —6

and therefore:
0z 0z

= 7 and =06
5':1?1 o 5';1'3

Based on this information, we could chose either x; or x5 to enter the basis and the value
of the objective function would increase. If we chose x; to enter the basis, then we must
determine which variable will leave the basis. To do this, we must investigate the elements
of B'A, and the current basic feasible solution B~'b. Since each element of B71A ; is
positive, we must perform the minimum ratio test on each element of B~'A ;. We know
that B~*A | is just the first column of B~'N which is:

13



B_lﬁ,l =

= = L2

Performing the minimum ratio test, we see have:

(120 160 35
e B N T

In this case, we see that index 3 (35/1) is the minimum ratio. Therefore, variable z, will
enter the basis and varable s; will leave the basis. The new basic and non-basic variables

will be:

0 1
N=1|0 2
L 0

Note we have simply swapped the column corresponding to x; with the column corresponding
to 54 In the basis matrix B and the non-basic matrix N. We will do this repeatedly in the
example and we recommend the reader keep track of which variables are being exchanged
and why certain columns in B are being swapped with those in N.

14



Using the new B and N matrices, the derived matrices are then:

15 —3 1
B'b=[125] B'N=|-1 2
3D L 0

T'he cost imformation becomes:

cpB'b =245 ¢pB'N=[7 0] B 'N—-cx=[7 —6]

Using the new B and N matrices, the derived matrices are then:

L5 -3 1
B'b=|125| B"'N=[-1 2
35 L 0

['he cost mformation becomes:
chB7'b =245 ¢hBT'N=[7 0] 4B 'N—cx=[7 —6]
using this mformation, we can compute:
cpB'A; —c; =7
cpB A, —cy = —6

15



Based on this information, we can only choose x5 to enter the basis to ensure that the
value of the objective function increases. We can perform the minimum ration test to figure
out which basic variable will leave the basis. We know that B~'A ; is just the second column
of B7'N which is:

1
B'A,= |2
0

Performing the minimum ratio test, we see have:

15 125
min § —, ——
1° 2

In this case, we see that index 1 (15/1) is the minimum ratio. Therefore, variable zo will
enter the basis and variable s; will leave the basis. The new basic and non-basic variables
will be: The new basic and non-basic variables will be:

o 6
Xp= | 8| Xn= [33] cg = |U| oy = B]
Iy 7

and the matrices become:

1 0 3 0 1
B=12 1 1} N=1]0 0
00 1 L 0

16



The derived matrices are then:

15 -3 1
B 'b= 19! B 'N=1!5 -2
35 1 0

The cost mformation becomes:
cgB™'b =335 ¢gB'N=[-11 6] cgB"'N—cnx=[-11 6]

Based on this information, we can only choose s; to (re-enter) the basis to ensure that
the value of the objective function increases. We can perform the minimum ration test to
ficure out which basic variable will leave the basis. We know that B='A 5 is just the fifth

column of B™'*N which is:
—3
B1lA;=1|5
1

Performing the minimum ratio test, we see have:

: {95 35}
min § —. —
5001

In this case, we see that index 2 (95/5) is the minimum ratio. Therefore, variable s3 will
enter the basis and variable s, will leave the basis. The new basic and non-basic variables
will be:

] e ] -
Xp = | °3 XN = Cp — CN — 0
7

Iy 17



and the matrices become:
120

10 3 0 1 "
B=i{2 0 1] N=|10
01 1 0 0 50
The derived matrices are then: "
72 6/10 —1/5 “
B'b=[19] B'N=|1/5 -2/5 2
16 —1/5 2/5 ]
1] 10 20 30 a0 30 il
The cost information becomes: Figure 5.1.

chB7'b =544 LB 'N = [11/5 8/5] chB !N —cen = [11/5 &/5]

Since the reduced costs are now positive, we can conclude that we've obtained an optimal
solution because no improvement is possible. The final solution then is:

Ia T2
xp*= s3] =B7'b= |19
I 16

Simply, we have r; = 16 and x; = 72 as we obtained in Example 2.3. The path of extreme
points we actually took in traversing the boundary of the polyhedral feasible region is shown

in Figure 5.1.
18



4. Simplex Method—-Tableau Form

No one execntes the simplex algorithm in algebraic form. Instead, several representations
(tableau representations) have been developed to lesson the amount of writing that needs to
be done and to collect all pertinent information into a single table.

To see how a Simplexr Tableau 1s derived, consider Problem P in standard form:

max ET}E

P sit. Ax="Db
x =0
We can re-write P in an unusual way by introducing a new variable z and separating A into
its basic and non-basic parts to obtain:
max z
3 sit. z—chxp — chxy =0
(5:22) Bxp + Nxy = b
xg,XN = U
From the second equation, 1t’s clear
(5.23) xp+B 'Nxy=B"'b
We can multiply this equation by ¢ to obtain:
(5.24) chxp + cgB 'Nxn = cgB™'b
T

If we add this equation to the equation z — chxp — cixn = 0 we obtain:

(5.25) z+0"xp + LB !Nxy — chxn = cuB™'b 19



Here 0 1s the vector of zeros of appropriate size. This equation can be written as:
(5.26) z+0"xp+ (cpB'N —cy)xn = cpB™'b

We can now represent this set of equations as a large matrix (or tableau):

z | xp NN RHS
z 1] 0 [egB'N —cy | cgB 'b | Row 0
xp [0 1 B~'N B~'b | Rows 1 through m
The augmented matrix shown within the table:
. I 0 cfB !N —c|ciB'b
(5:27) [ 01 BN | B

15 simply the matrix representation of the simultaneous equations described by Equations
5.23 and 5.26. We can see that the first row consists of a row of the first row of the
(m + 1) x (m + 1) identity matrix, the reduced costs of the non-basic variables and the
current objective function values. The remainder of the rows consist of the rest of the
(m+1) x (m+ 1) identity matrix, the matrix B-'IN and B~'b the current non-zero part of
the basic feasible solution.

This matrix representation (or tableau representation) contains all of the information
we need to execute the simplex algorithm. An entering variable is chosen from among the
columns containing the reduced costs and matrix B~ N. Naturally, a column with a negative
reduced cost 1s chosen. We then chose a leaving variable by performing the minimum ratio
test on the chosen column and the right-hand-side (RHS) column. We pivot on the element
at the entering column and leaving row and this transforms the tablean into a new tableau

that represents the new basic feasible solution. 0



Theorem: The set of all feasible solutions to an LP
problem is a convex set.

Proof:




Theorem: An LP problem assumes its optimum at an extreme
point. If it assumes its optimum at more than one extreme point,
then it takes on the same value for every convex combination of
these particular points.

Proof:
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Appendix

1. Convex Sets

DEFINITION 4.1 (Convex Set). Let X C R"™. Then the set X is convex if and only if for
all pairs x1,x3 € X we have Ax; + (1 — A)xo € X for all A € [0, 1].

The definition of convexity seems complex, but it 1s easy to understand. First recall that
if A € [0, 1], then the point Ax;+ (1 —A)xy is on the line segment connecting x; and x5 in R™.
For example, when A = 1/2, then the point Ax; + (1 — A)x9 1s the midpoint between x; and
xo. In fact, for every point x on the line connecting x; and x we can find a value A € [0, 1]
so that x = Axy + (1 — A)xo. Then we can see that, convexity asserts that if x;.xy € X,
then every point on the line connecting x; and xs 1s also 1n the set X.

6. Extreme Points

DEFINITION 4.27 (Extreme Point of a Convex Set). Let C be a convex set. A point
xg € C' 18 a extreme point of C if there are no points x1 and x9 (X1 # Xg or X9 # Xp) so that
x = Ax1 + (1 — A)xg for some A € (0, 1).2

An extreme point i1s simply a point In a convex set C' that cannot be expressed as a strict
convex combination of any other pair of points in C. We will see that extreme points must
be located 1n specific locations 1n convex sets.

24
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DEFINITION 4.3 (Convex Combination). Let xq,..., Xm €R™ If Ay, ..., A €10,1] and

Z)\z' =1 then
i=1

(42) X = i )kz'Xz'
i=1

1s called a conver combination of x1,...,Xm. If \; <1 foralli=1,..., m, then Equation

4.2 15 called a strict conver combination.

7. Linear Combinations, Span, Linear Independence

DEFINITION 3.27. Let x4.....X,, be vectors in € R™ and let a,..... a,, € R be scalars.
Then

(3.34)  a1xy + -+ Xy

15 a linear combination of the vectors x,,...,X,,.
Clearly. any linear combination of vectors in " 1s also a vector in R".

DEFINITION 3.28 (Span). Let X = {xq,...,X,,} be a set of vectors in € R™, then the
span of A 1s the set:

(3.35) span(&X) = {y € R"|y is a linear combination of vectors in X'}

DEFINITION 3.29 (Linear Independence). Let x4, ..., X, be vectors in € R". The vectors

X1,..., X, are linearly dependent 1f there exists aq.. ... ., € R, not all zero, such that

(3.36) a1xy + -+ apX, =0

If the set of vectors x;..... X, 18 not linearly dependent, then they are linearly independent

and Equation 3.36 holds just in case a; =0 foralli=1,...,n.

25



8. Basis

DEFINITION 3.35 (Basis). Let & = {x,...,X,,} be a set of vectors in R". The set A is
called a basis of R™ if A 1s a linearly independent set of vectors and every vector in R™ is
in the span of A. That is, for any vector w € B" we can find scalar values oy, ..., a,, such
that

(3.37) w = Zm: X

THEOREM 3.37. If A" is a basis of R", then X' contains precisely n vectors.
LEMMA 3.38. Let {xy1,...,Xpms1} be a linearly dependent set of vectors in R™ and let

X = {x1,...., X} be a linearly independent set. Further assume that X,y # 0. Assume
1....,0,1 are a set of scalars, not all zero, so that

m+1
(341) > ax; =0

i=1

For any j € {1,..., m} such that a; # 0, if we replace x; in the set X with X;,41, then this

¥ ¥

new set of vectors is linearly independent.

REMARK 3.39. This lemma proves an interesting result. If A" is a basis of R™ and x,,.
15 another, non-zero, vector in ™, we can swap X,,,+ for any vector x; in A" as long as when
we express Xm,41 as a linear combination of vectors in A" the coefficient of x; 1s not zero.
That 1s, since A 1s a basis of R™ we can express:

e
Xm+1 = E Qe X

As long as a; # 0, then we can replace x; with x,,4; and still have a basis of K™. 2



0. Rank

DEFINITION 3.40 (Row Rank). Let A € R™*". The row rank of A is the size of the
largest set of row (vectors) from A that are linearly independent.

EXERCISE 36. By analogy define the column rank of a matrix. [Hint: You don’t need a
hint. |

T'HEOREM 3.41. If A meﬂ 15 a ??lﬂ-frﬂ?_ﬁ, then E‘Ef:"'ﬁ!—f:"ﬂ-flﬂ-?y row GP{’.?‘{IﬁDﬁS on A do not
Chﬂﬂgfﬂ the row rank.

THEOREM 3.42. If A € R™*" is a matriz, then the row rank of A is equal to the column
rank of A. Further, rank(A) < min{m, n}.

THEOREM 3.43. If A € R™*™ (i.e., A is a square matriz) and rank(A) = m, then A is
invertible.

DEFINITION 3.44. Suppose that A € R™*™ and let m < n. Then A has full row rank if
rank(A) = m.

Reference: Kevin G Ross, ISM206 Optimization theory and applications, Lecture notes,
https://courses.soe.ucsc.edu/courses/ism206 , Date accessed: 16.07.2017

Christopher Grin, Linear Programming: Penn State Math 484 Lecture Notes, Version 1.8.2.1
http://www.personal.psu.edu/cxq286/Math484 V1.pdf , Date accessed: 16.07.2017
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