MTM4501-Operations Research

Gökhan Göksu, PhD

Week 13

Course Content

- Definition of OR and Its History
- Decision Theory and Models
- Network Analysis
- Inventory Management Models
- Queue Models
- Waiting Line Models
- Queuing Theory

Queue Models

Consider the following examples:

- Customers waiting for hair cutting at a barber shop
- Customers waiting for bank service at a bank teller
- Customers waiting for bar service at a cafeteria
- Customers waiting to pay at a supermarket cash desk
- Cars waiting to pay at a highway exit cash desk
- Cars waiting at traffic lights
- Trucks waiting to load or unload at a dock
- Airplanes waiting to take off at a runway
- Items waiting to be processed by a machine
- Machines waiting to be repaired for maintenance
- Items waiting to be inspected at a quality control desk
- Jobs waiting to be executed by a computer
- Documents waiting to be signed in an office
- Bills waiting to be processed at a legislative system

Queue Models

- All above examples may be given as examples of queues (or waiting lines)
- Customers wait for a service as the service capacity is not sufficient to supply the service at once.
- The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers.

Queue Models

Figure: Cost-based queuing decision model

Fundamentals of Queue Models

- Customers: Independent entities that arrive to a service provider at random times and wait for some type of service, then leave.
- Queue: Customers that arrived to the server/service provider and are waiting in line for their service to start in the queue.
- Server (Tur: Hizmet Sağlayıcı/Sunucu): Able to serve only one customer at a time; An entity that serves customers on a first-in, first-out (FIFO) basis, with the length of service delivery time dependent on the type of service.
- Arrival Rate (Tur: Geliş Oranı): The average number of customers per unit time (customers have arrived with the aim of getting service). It is represented by $\lambda . \lambda$ is assumed to be described by normal distribution.
- Service Rate (Tur: Hizmet Oranı): The average number of customers served per unit time. It is represented by μ.
Remark: $\mu>\lambda$: A queue is formed when customers arrive faster than they can get served.

Queue Models

- Examples:
- If the Service Time is 10 minutes and a customer arrives every 15 minutes, there will be no queue at all!!!
- If the Service Time is 15 minutes and a customer arrives every 10 minutes, the queue will extend indefinitely!!!
- Service Discipline: Represents the order in which customers are selected from a queue. Considering the first-come, first-served (FIFO) discipline is the most common.
- Arrival Source: The source where customers are generated can be either infinite or finite. A limited resource constrains the incoming customers for service (e.g., machines requesting service from a mechanic). An example of an infinite resource could be calls coming to a call center.
- Number of Customers Waiting in the Queue (Queue Length): The expected number of waiting customers for a service. Represented by L_{q}.

Queue Models

- Number of Customers in the System: The total of customers waiting for service and those being serviced. Represented by L_{s}.
- Waiting Time in the Queue: The total waiting time in the queue per customer. Represented by W_{q}.
- Total Waiting Time in the System: The sum of waiting time in the queue per customer and the total service time. Represented by W_{s}.

Figure: Schematic representation of a queue system with c parallel servers

Queue Models

Notation - single queueing systems

Multiple Servers

Queue Models

Notation - Networks of queues

Model 1: Single-Server Queue Model with Infinite Arrival Source

- P_{n} : Probability of having n customers in the system
- n : Number of customers in the system (in the queue and being served) This model derives P_{n} as a function of λ and μ. These probabilities are then used to determine performance measures such as the average queue length, average waiting time, and the average utilization of the facility. The probabilities P_{n} are determined using the transition rate diagram shown below.

Figure: Transition rate diagram

The queue system is in state n when the number of customers in the system is n.

- λ : Arrival rate
- μ : Service rate

Model 1: Single-Server Queue Model with Infinite Arrival Source

When the system is in state n, three possible events can occur:

- When a departure occurs at a rate of μ, the system is in state $n-1$.
- When an arrival occurs at a rate of λ, the system is in state $n+1$.
- When there is no arrival or departure, the system remains in state n.

These are the last three nodes of the transition diagram. Note that state 0 can transition to state 1 only if there is an arrival at a rate of λ. Also, note that μ is undefined at state 0 since no departure can occur if the system is empty. Based on the fact that the expected flow rates entering and leaving state n must be equal, considering that state n can only transition to states $n-1$ and $n+1$, the following formula is derived:

$$
(\text { Expected flow rate into } n \text { state })=\lambda \cdot P_{n-1}+\mu \cdot P_{n+1}
$$

Similarly:

$$
(\text { Expected flow rate out of } n \text { state })=\lambda \cdot P_{n}+\mu \cdot P_{n}
$$

Model 1: Single-Server Queue Model with Infinite Arrival Source

According to these two formulas, the balance equation is written as follows:

$$
\lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu) P_{n}, \quad n=1,2, \ldots
$$

For $n=0$, the balance equation is written as follows:

$$
\begin{equation*}
\lambda P_{0}=\mu P_{1} \tag{1}
\end{equation*}
$$

The balance equation can be solved recursively. That is, for $n=1$:

$$
\begin{equation*}
\lambda P_{0}+\mu P_{2}=\lambda P_{1}+\mu P_{1} \tag{2}
\end{equation*}
$$

Obtained by substituting (1) into (2):

$$
P_{2}=\left(\frac{\lambda}{\mu}\right)^{2} P_{0}
$$

can be written. Similarly, for $n=2$:

$$
P_{3}=\left(\frac{\lambda}{\mu}\right)^{3} P_{0}
$$

can be obtained. This expression can be generalized as follows:

$$
P_{n}=\left(\frac{\lambda}{\mu}\right)^{n} P_{0}
$$

Model 1: Single-Server Queue Model with Infinite Arrival Source

 P_{0} can be determined from the fact that the sum of all probabilities is 1 :$$
\begin{aligned}
\sum_{n=0}^{\infty} P_{n}=\sum_{n=0}^{\infty}\left[\left(\frac{\lambda}{\mu}\right)^{n} P_{0}\right]=P_{0} \sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n} & =P_{0} \lim _{n \rightarrow \infty} \frac{1-\left(\frac{\lambda}{\mu}\right)^{n+1}}{1-\frac{\lambda}{\mu}} \\
& =P_{0} \frac{1}{1-\frac{\lambda}{\mu}}=1 .
\end{aligned}
$$

Thus, the probability of the system being empty, P_{0}, can be calculated as follows:

$$
P_{0}=1-\frac{\lambda}{\mu} .
$$

Conversely, the probability of the system being busy is calculated as follows:

$$
P_{m}=1-P_{0}=\frac{\lambda}{\mu} .
$$

The probability of having n customers in the system is:

$$
P_{n}=\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=\left(\frac{\lambda}{\mu}\right)^{n}\left(1-\frac{\lambda}{\mu}\right) .
$$

Model 1: Single-Server Queue Model with Infinite Arrival Source

L_{s} : Expected number of customers in the system

$$
L_{s}=\mathbb{E}(n)=\sum_{n=0}^{\infty} n P_{n}=\sum_{n=1}^{\infty} n P_{n}=\sum_{n=1}^{\infty} n\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=P_{0} \sum_{n=1}^{\infty} n\left(\frac{\lambda}{\mu}\right)^{n}
$$

Here, if we make a definition for the first m sums:

$$
\begin{aligned}
S_{m} & =\frac{\lambda}{\mu}+2\left(\frac{\lambda}{\mu}\right)^{2}+3\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+m\left(\frac{\lambda}{\mu}\right)^{m} \\
\Longrightarrow \quad-\frac{\lambda}{\mu} S_{m} & =-\left(\frac{\lambda}{\mu}\right)^{2}-2\left(\frac{\lambda}{\mu}\right)^{3}-3\left(\frac{\lambda}{\mu}\right)^{4}-\ldots-m\left(\frac{\lambda}{\mu}\right)^{m+1}
\end{aligned}
$$

By summing these two equations:

$$
\begin{aligned}
& S_{m}-\frac{\lambda}{\mu} S_{m}=\frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{2}+\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+\left(\frac{\lambda}{\mu}\right)^{m}-m\left(\frac{\lambda}{\mu}\right)^{m+1} \\
& \underbrace{\left(1-\frac{\lambda}{\mu}\right)}_{P_{0}} S_{m}=\frac{\lambda}{\mu} \frac{1-\left(\frac{\lambda}{\mu}\right)^{m}}{1-\frac{\lambda}{\mu}}-m\left(\frac{\lambda}{\mu}\right)^{m+1}
\end{aligned}
$$

is obtained.

Model 1: Single-Server Queue Model with Infinite Arrival Source

In the limit,

$$
\lim _{m \rightarrow \infty} P_{0} S_{m}=\lim _{m \rightarrow \infty}\left[\frac{\lambda}{\mu} \frac{1-\left(\frac{\lambda}{\mu}\right)^{m}}{1-\frac{\lambda}{\mu}}-m\left(\frac{\lambda}{\mu}\right)^{m+1}\right]=\frac{\lambda / \mu}{1-\frac{\lambda}{\mu}}=\frac{\lambda}{\mu-\lambda}=L_{s}
$$

L_{q} : Expected number of customers in the queue

$$
L_{q}=L_{s}-\frac{\lambda}{\mu}=\frac{\lambda}{\mu-\lambda}-\frac{\lambda}{\mu}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}
$$

W_{s} : Average time a customer spends in the system

$$
W_{s}=\frac{L_{s}}{\lambda}=\frac{1}{\mu-\lambda}
$$

W_{q} : Average time a customer spends in the queue

$$
W_{q}=\frac{L_{q}}{\lambda}=\frac{\lambda}{\mu(\mu-\lambda)}
$$

The total cost per unit time is calculated as follows:

$$
\begin{aligned}
(\text { Total cost per unit time }) & =\underbrace{\binom{\text { Cost per }}{\text { service }}}_{c_{1}} \cdot \mu+\underbrace{\binom{\text { cost per }}{\text { waiting }}}_{c_{2}} \cdot L_{s} \\
& =c_{1} \mu+c_{2} L_{s}
\end{aligned}
$$

Model 1: Single-Server Queue Model with Infinite Arrival Source

 ExampleIn a factory, the average malfunction time of a machine is 12 minutes, and the average repair time is 8 minutes.
(a) At any given moment, what is the number of machines that are not in production?
(b) How much time should pass for the broken machines to return to production?
(c) What is the probability of the repairman being idle (i.e. out of work)?
(d) For the case where the probability of malfunction increases by 20%, answer (a), (b), and (c) again.

