MTM4501-Operations Research

Gökhan Göksu, PhD

Week 14

Course Content

- Definition of OR and Its History
- Decision Theory and Models
- Network Analysis
- Inventory Management Models
- Queue Models
- Waiting Line Models
- Queuing Theory

Model 2: Single Source Queue M wIAS \& Finite Queue Length

 The system can contain at most m customers at any given time. A single server serves a customer, and the queue length cannot exceed $m-1$.- λ : Arrival rate
- μ : Service rate

Balance Equations:

- For $n=0: \lambda P_{0}=\mu P_{1}$
- For $n=1,2, \ldots, m-1: \lambda P_{n-1}+\mu P_{n+1}=\lambda P_{n}+\mu P_{n}$
- For $n=m: \lambda P_{m-1}=\mu P_{m}$

- For $n=0: \lambda P_{0}=\mu P_{1} \Longrightarrow P_{1}=\frac{\lambda}{\mu} P_{0}$
- For $n=1: \lambda P_{0}+\mu P_{2}=\lambda P_{1}+\mu P_{1} \Longrightarrow P_{2}=\left(\frac{\lambda}{\mu}\right)^{2} P_{0}$
- For $n=2: \lambda P_{1}+\mu P_{3}=\lambda P_{2}+\mu P_{2} \Longrightarrow P_{3}=\left(\frac{\lambda}{\mu}\right)^{3} P_{0}$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

- For $n=m: \Longrightarrow P_{m}=\frac{\lambda}{\mu} P_{m-1}=\left(\frac{\lambda}{\mu}\right)^{m} P_{0}$

In this model, due to the assumption of finite queue length, the sum of probabilities for a finite number of states will be 1 . Depending on the values of λ and μ, two cases arise:

- In the case of $\lambda=\mu$:

$$
\sum_{n=0}^{m} P_{n}=1 \Longrightarrow \sum_{n=0}^{m}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=(m+1) P_{0}=1 \Longrightarrow P_{0}=\frac{1}{m+1}
$$

- In the case of $\lambda \neq \mu$:

$$
\begin{aligned}
\sum_{n=0}^{m} P_{n}=1 & \Longrightarrow \sum_{n=0}^{m}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=P_{0} \frac{1-\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\left(\frac{\lambda}{\mu}\right)}=1 \\
& \Longrightarrow P_{0}=\frac{1-\left(\frac{\lambda}{\mu}\right)}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}}
\end{aligned}
$$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

Accordingly, the probability of the system being empty can be summarized as follows:

$$
P_{0}= \begin{cases}\frac{1-\left(\frac{\lambda}{\mu}\right)}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}} & , \lambda \neq \mu \\ \frac{1}{m+1} & , \lambda=\mu\end{cases}
$$

The probability of having n customers in the system can be calculated as follows:

$$
P_{n}= \begin{cases}\left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{1-\left(\frac{\lambda}{\mu}\right)}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}} & , \lambda \neq \mu \\ \left(\frac{\lambda}{\mu}\right)^{n} \cdot \frac{1}{m+1} & , \lambda=\mu\end{cases}
$$

L_{s} : Expected number of customers in the system

$$
L_{s}=\mathbb{E}(n)=\sum_{n=0}^{m} n P_{n}=\sum_{n=1}^{m} n P_{n}
$$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

Again, depending on the values of λ and μ, there are two cases for L_{s} :

- In the case of $\lambda=\mu$:

$$
L_{s}=\sum_{n=1}^{m} n P_{n}=\sum_{n=1}^{m} n \cdot \frac{1}{m+1}=\frac{1}{m+1} \sum_{n=1}^{m} n=\frac{1}{m+1} \frac{m(m+1)}{2}=\frac{m}{2}
$$

- In the case of $\lambda \neq \mu$:

$$
\begin{aligned}
L_{s} & =\sum_{n=1}^{m} n P_{n}=\sum_{n=1}^{m} n\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=P_{0} \underbrace{\sum_{n=1}^{m} n\left(\frac{\lambda}{\mu}\right)^{n}}_{S_{m}} \\
S_{m} & =1 \cdot \frac{\lambda}{\mu}+2 \cdot\left(\frac{\lambda}{\mu}\right)^{2}+3 \cdot\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+m \cdot\left(\frac{\lambda}{\mu}\right)^{m} \\
-\frac{\lambda}{\mu} S_{m} & =-\left(\frac{\lambda}{\mu}\right)^{2}-2 \cdot\left(\frac{\lambda}{\mu}\right)^{3}-3 \cdot\left(\frac{\lambda}{\mu}\right)^{4}-\ldots-m \cdot\left(\frac{\lambda}{\mu}\right)^{m+1}
\end{aligned}
$$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

The last two equations are summed side by side:

$$
\begin{aligned}
\left(1-\frac{\lambda}{\mu}\right) S_{m} & =\frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{2}+\left(\frac{\lambda}{\mu}\right)^{3}+\ldots+\left(\frac{\lambda}{\mu}\right)^{m}-m\left(\frac{\lambda}{\mu}\right)^{m+1} \\
& =\frac{\lambda}{\mu} \frac{1-\left(\frac{\lambda}{\mu}\right)^{m}}{1-\frac{\lambda}{\mu}}-m\left(\frac{\lambda}{\mu}\right)^{m+1} \\
& =\frac{\frac{\lambda}{\mu}-\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\frac{\lambda}{\mu}}-(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1}+\left(\frac{\lambda}{\mu}\right)^{m+1} \\
& =\frac{\frac{\lambda}{\mu}-\left(\frac{\lambda}{\mu}\right)^{m+1}+\left(\frac{\lambda}{\mu}\right)^{m+1}-\left(\frac{\lambda}{\mu}\right)^{m+2}}{1-\frac{\lambda}{\mu}}-(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1} \\
& =\frac{\frac{\lambda}{\mu}\left(1-\left(\frac{\lambda}{\mu}\right)^{m+1}\right)}{1-\frac{\lambda}{\mu}}-(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1}
\end{aligned}
$$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

 If the expression is rearranged:$$
S_{m}=\frac{\frac{\lambda}{\mu}\left(1-\left(\frac{\lambda}{\mu}\right)^{m+1}\right)}{\left(1-\frac{\lambda}{\mu}\right)^{2}}-\frac{(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\frac{\lambda}{\mu}}
$$

Substituting this sum into $L_{s}=P_{0} S_{m}$:

$$
\begin{aligned}
L_{s} & =\frac{1-\frac{\lambda}{\mu}}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}} \frac{\frac{\lambda}{\mu}\left(1-\left(\frac{\lambda}{\mu}\right)^{m+1}\right)}{\left(1-\frac{\lambda}{\mu}\right)^{2}}-\frac{(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\frac{\lambda}{\mu}} \\
& =\frac{\frac{\lambda}{\mu}}{1-\frac{\lambda}{\mu}}-\frac{(m+1)\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}}
\end{aligned}
$$

Accordingly, the expected number of customers in the system can be summarized as follows:

$$
L_{s}= \begin{cases}\frac{\lambda}{\mu-\lambda}-(m+1) \frac{\left(\frac{\lambda}{\mu}\right)^{m+1}}{1-\left(\frac{\lambda}{\mu}\right)^{m+1}} & , \lambda \neq \mu \\ \frac{m}{2} & , \lambda=\mu\end{cases}
$$

Model 2: Single Source Queue M wIAS \& Finite Queue Length

- P_{m} : Probability of the system being busy

$$
P_{m}=1-P_{0}
$$

- L_{q} : Expected number of customers in the queue

$$
L_{q}=L_{s}-P_{m}=L_{s}-\left(1-P_{0}\right)
$$

- λ_{e} : Effective arrival rate

$$
\lambda_{e}=\lambda\left(1-P_{m}\right)
$$

- W_{s} : Average waiting time in the system

$$
W_{s}=\frac{L_{s}}{\lambda_{e}}=\frac{L_{s}}{\lambda\left(1-P_{m}\right)}
$$

- W_{q} : Average waiting time in the queue

$$
W_{q}=\frac{L_{q}}{\lambda_{e}}=\frac{L_{q}}{\lambda\left(1-P_{m}\right)}
$$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

In this model, it is assumed that there are s parallel servers, and each parallel server is identical.

- λ : Arrival rate
- μ : Service rate of each server
- s : Number of parallel servers
- n : Number of customers in the system

The effect of using parallel servers is a proportionate increase in the facility service rate:
$-n \leq s \Longrightarrow$ No queue forms

- $n>s \Longrightarrow s$ customers are in service, and $(n-s)$ customers are waiting in the queue.

In the previous models, it was assumed that $\lambda<\mu$. In this multi-server model, due to s parallel servers, it is assumed that $\lambda<\mu \cdot s$. Here, the product $\mu \cdot s$ can be interpreted as the service capacity.

Model 3: Infinite Arrival Rate Multi-Server Queue Model

Balance Equations: For $0 \leq n<s$;

- For $n=0,1,2, \ldots, s, \Longrightarrow \lambda P_{n-1}+(n+1) \mu P_{n+1}=\lambda P_{n}+n \mu P_{n}$

- For $n=0 \Longrightarrow \lambda P_{0}=\mu P_{1} \Longrightarrow P_{1}=\frac{\lambda}{\mu} P_{0}$
- For $n=1 \Longrightarrow \lambda P_{0}+2 \mu P_{2}=\lambda P_{1}+\mu P_{1} \Longrightarrow P_{2}=\frac{1}{2}\left(\frac{\lambda}{\mu}\right)^{2} P_{0}$
- For $n=2 \Longrightarrow \lambda P_{1}+3 \mu P_{3}=\lambda P_{2}+2 \mu P_{2} \Longrightarrow P_{3}=\frac{1}{3 \cdot 2}\left(\frac{\lambda}{\mu}\right)^{3} P_{0}$
-
- For $n=s \Longrightarrow P_{s}=\frac{1}{s!}\left(\frac{\lambda}{\mu}\right)^{s} P_{0}$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

Balance Equations: For $s \leq n$;

- For $n=s \Longrightarrow \lambda P_{s-1}+s \mu P_{s+1}=\lambda P_{s}+s \mu P_{s} \Longrightarrow P_{s+1}=\frac{\lambda}{s \mu} P_{s}$
- For

$$
n=s+1 \Longrightarrow \lambda P_{s}+s \mu P_{s+2}=\lambda P_{s+1}+s \mu P_{s+1} \Longrightarrow P_{s+2}=\left(\frac{\lambda}{s \mu}\right)^{2} P_{s}
$$

-
- For $n=s+k \Longrightarrow P_{s+k}=\left(\frac{\lambda}{s \mu}\right)^{k} P_{s}$

By writing $k=n-s$ in the last expression, the probability of having n customers in the system for $s \leq n$ is obtained:

$$
P_{n}=\left(\frac{\lambda}{s \mu}\right)^{n-s} P_{s}=\left(\frac{\lambda}{s \mu}\right)^{n-s} \frac{1}{s!}\left(\frac{\lambda}{\mu}\right)^{s} P_{0}=\frac{1}{s!} \frac{1}{s^{n-s}}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}
$$

For all cases, the probability of having n customers in the system can be summarized as follows:

$$
P_{n}= \begin{cases}\frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n} P_{0} & , 0 \leq n<s \\ \frac{1}{s!} \frac{1}{s^{n-s}}\left(\frac{\lambda}{\mu}\right)^{n} P_{0} & , s \leq n\end{cases}
$$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

Considering the sum of all probabilities:

$$
\sum_{n=0}^{\infty} P_{n}=\sum_{n=0}^{s-1} P_{n}+\sum_{n=s}^{\infty} P_{n}=\sum_{n=0}^{s-1} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}+\underbrace{\sum_{n=s}^{\infty} \frac{1}{s!} \frac{1}{s^{n-s}}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}}_{T}
$$

T can be calculated as follows:

$$
T=\sum_{n=s}^{\infty} \frac{1}{s!} \frac{1}{s^{n-s}}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}=\sum_{n=s}^{\infty} \frac{1}{s!} \frac{1}{s^{-s}}\left(\frac{\lambda}{s \mu}\right)^{n} P_{0}=\frac{P_{0}}{s!s^{-s}} \sum_{n=s}^{\infty}\left(\frac{\lambda}{s \mu}\right)^{n}
$$

Under the assumption $\lambda<\mu \cdot s$;

$$
T=\frac{P_{0}}{s!s^{-s}}\left(\frac{\lambda}{s \mu}\right)^{s} \frac{1}{1-\frac{\lambda}{s \mu}}=\frac{P_{0}}{s!}\left(\frac{\lambda}{\mu}\right)^{s} \frac{1}{1-\frac{\lambda}{s \mu}}
$$

Substituting this into the sum of probabilities;

$$
\sum_{n=0}^{\infty} P_{n}=\sum_{n=0}^{s-1} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n} P_{0}+\frac{P_{0}}{s!}\left(\frac{\lambda}{\mu}\right)^{s} \frac{1}{1-\frac{\lambda}{s \mu}}=1
$$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

Therefore, the probability of the system being empty is calculated as follows:

$$
P_{0}=\left[\sum_{n=0}^{s-1} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n}+\frac{1}{s!}\left(\frac{\lambda}{\mu}\right)^{s} \frac{1}{1-\frac{\lambda}{s \mu}}\right]^{-1}
$$

L_{q} : Expected number of customers in the queue
$L_{q}=\mathbb{E}(n-s)=\sum_{n=s}^{\infty}(n-s) P_{n}=\frac{P_{0}}{s!s^{-s}} \sum_{n=s}^{\infty}(n-s)\left(\frac{\lambda}{s \mu}\right)^{n}=\frac{\left(\frac{\lambda}{\mu}\right)^{s} \frac{\lambda}{s \mu}}{s!\left(1-\frac{\lambda}{s \mu}\right)^{2}} P_{0}$
L_{s} : Expected number of customers in the system

$$
L_{s}=L_{q}+s \frac{\lambda}{s \mu}=L_{q}+\frac{\lambda}{\mu}
$$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

W_{s} : Average waiting time in the system

$$
W_{s}=\frac{L_{s}}{\lambda}
$$

W_{q} : Average waiting time in the queue

$$
W_{q}=\frac{L_{q}}{\lambda}
$$

Probability of waiting for service

$$
\mathbb{P}(n \geq s)=\sum_{n=s}^{\infty} P_{n}=\frac{\left(\frac{\lambda}{\mu}\right)^{s}}{s!\left[1-\frac{\lambda}{s \mu}\right]} P_{0} .
$$

Model 3: Infinite Arrival Rate Multi-Server Queue Model

Example

There are 3 service desks at a post office. Approximately 192 customers arrive every day. Each business day consists of 8 hours. The average service time for each customer is 5 minutes. Therefore;
a) What is the probability of having no customers in the post office?
b) What is the probability of at least one service desk being busy?
c) What is the probability of waiting for service?
d) What is the expected number of customers in the queue?
e) What is the expected number of customers in the system?
f) What is the average waiting time for each customer in the queue?

