
MTM4501-Operations Research

Gökhan Göksu, PhD

Week 4

1 / 24 Gökhan Göksu, PhD MTM4501



Course Content

▶ Definition of OR and Its History
▶ Decision Theory and Models
▶ Network Analysis

▶ Shortest Path Algorithms
▶ Inventory Management Models
▶ Queue Models

2 / 24 Gökhan Göksu, PhD MTM4501



Shortest Path Algorithms

▶ Shortest path algorithms determine the shortest route
between the source and destination in a transportation
network.

▶ Algorithms of these kind are used to determe directions on
online applications such as Mapquest or Google Maps.

▶ Source and destination nodes
▶ single source shortest path algorithms are used when

we need to find the shortest path(s) from a source node to
all other nodes.

▶ all pairs shortest path algorithms are used when we
need to find the shortest paths between each pair of nodes.

3 / 24 Gökhan Göksu, PhD MTM4501



Shortest Path Algorithms: Dijkstra’s Algorithm
In this section, two algorithms will be introduced for both cyclic (in other words,
containing loops) and acyclic networks.

1. Dijkstra’s algorithm
2. Floyd’s algorithm

Dijkstra’s algorithm is designed to determine the shortest paths between the
source node and every other node in the network. The Floyd’s algorithm, on
the other hand, is more general as it allows the determination of the shortest
path between any two nodes in the network.

Dijkstra’s Algorithm: The calculations of this algorithm proceed from node
i to the “immediate" succeeding node j using a special labeling procedure.
Let ui be the shortest distance from node 1 to the node i and let dij (≥ 0)
be defined as the length of the link (i, j). Then the label for node j will be as
follows:

[uj , i] = [ui + dij , i], dij ≥ 0
If it is the source node, it is marked as [0,−].

In this algorithm, node labels are of two types: temporary and permanent.
The temporary label can be replaced with another label if a shorter path to the
same node is found. At the point when it becomes clear that no better way
can be found, the status of the temporary label becomes permanent.

4 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm

The steps of the algorithm are summarized below:
▶ Step 0: Label the source node (node 1) with permanent label [0,−]. Set

i = 1.

▶ Step i:

▶ (a) Provided that j is not permanently tagged, compute
temporary labels [ui + dij , i] for each node j reachable from
node i . If node j is already labeled with [uj , k ] within another
node k and ui + dij < uj , then replace [uj , k ] with [ui + dij , i].

▶ (b) Stop, if all nodes have persistent labels. Otherwise,
among all temporary tags, choose the one with the shortest
distance (= ur ) of [ur , s] (in case of tie, choose any at
random). Set i = r and repeat step i .

5 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm

Example
The network in the figure shows the roads between the 1st city (1st node) and
the other four cities (2nd node to 5th node) and their distances in km. Determine
the shortest route from the 1st city to the remaining four cities.

6 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm
▶ Iteration 0: Assign permanent label [0,−] to node 1.
▶ Iteration 1: From node 1, which was last permanently tagged, nodes 2 and 3

can be reached. Thus, the list of labeled nodes (temporary and permanent)
becomes as the following.

When we look at the labels of the 2nd and 3rd nodes, [100, 1] and [30, 1], which
have two temporary labels, it is seen that the 3rd node gives the shorter distance
(u3 = 30). Therefore, the status of the 3rd node is changed permanently.

▶ Iteration 2: From the 3rd node, the 4th and 5th nodes can be reached and the list
of labeled nodes is generated as follows:

The status of the temporary tag [40, 3] at the 3rd node is changed permanently
(u4 = 40).

7 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm
▶ Iteration 3: From the 4th node, the 2nd and 5th nodes can be reached.

Thus, the list of labeled nodes is updated as follows.

In the 2nd iteration, the 2nd node’s temporary label [100, 1] is changed to
[55, 4] in the 3rd iteration, indicating that a shorter path exists for the 4th

node. Moreover, in the 3rd iteration, the 5th node has two alternatives
with the same distance (u5 = 90).

▶ Iteration 4: Only the 3rd node can be reached from the 2nd node.
However, the 3rd node is permanently tagged and cannot be relabeled.
The new list of labels remains the same except that the label in the 2nd

node persists in the 3rd iteration. This leaves the 5th node as the only
temporary label. Since the 5th node does not go to other nodes, its
status is converted to permanent and the process is completed.

8 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm
The algorithm’s calculations can be performed more easily over the network.

To determine the shortest path between the 1st node and another node in the
network, one starts from the desired destination node and moves backwards
through the nodes using the information provided by the permanent labels. For
example, the following order determines the shortest path from the 1st node to
the 2nd node.

Thus, the desired path is and the total length is km.
9 / 24 Gökhan Göksu, PhD MTM4501



Dijkstra’s Algorithm

Example
The network in the figure shows the roads between the 1st city (1st node) and
the other five cities (2nd node to 6th node) and their distances in km.
Determine the shortest route from the 1st city to the remaining five cities.

10 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm
Floyd’s Algorithm: Floyd’s algorithm is more general than Dijkstra’s algorithm, because
it determines the shortest path between any two nodes in the network. In this algorithm,
the network with n nodes is expressed as a square matrix with n rows and n columns.
The (i, j) element of the matrix is the distance dij from node i to the node j ; dij is finite if
i is directly connected to j , otherwise it is infinite.

For given nodes i , j and k , if it is shorter to reach k by starting from i and passing
through j , i.e.

dij + djk < dik

then, replacing the direct path from i to k with the indirect path i → j → k gives the
optimal solution.

This triple operation is systematically applied to the network using the steps on the
next slide.

11 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm
▶ Step 0: The starting distance matrix D0 and the node sequence matrix S0 are

defined as below. Diagonal elements are marked with (−) to indicate that they
are blocked. It is determined as k = 1.

D0 1 2 . . . j . . . n
1 − d12 . . . d1j . . . d1n
2 d21 − . . . d2j . . . d2n
...

...
...

. . .
...

. . .
...

i di1 di2 . . . dij . . . din
...

...
...

. . .
...

. . .
...

n dn1 dn2 . . . dnj . . . −

S0 1 2 . . . j . . . n
1 − 2 . . . j . . . n
2 1 − . . . j . . . n
...

...
...

. . .
...

. . .
...

i 1 2 . . . j . . . n
...

...
...

. . .
...

. . .
...

n 1 2 . . . j . . . −

▶ General Step k : Row k and column k are defined as the key (pivot) row and the
key (pivot) column. The triple operation is applied to each dij element in Dk−1 for
all i and j . If the condition

dik + dkj < dij , (i ̸= k , j ̸= k and i ̸= j)

is satisfied, make the following changes:
▶ (a) In Dk−1, dij is replaced by dik + dkj to form Dk .
▶ (b) In Sk−1, sij is replaced by k to form Sk . Set k = k + 1. If k = n + 1,

stop; else repeat step k .

12 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

Dk−1, as shown in the figure, step k in the algorithm can be explained more clearly.
Here, row k and column k define the current pivot row and column. Row i represents
any of the rows 1, 2, ..., k − 1, and row p represents any of the row k + 1, k + 2, ..., n.
Similarly, column j represents any of the columns 1, 2, ..., k −1. In the triple operation, if
the sum of the elements represented by squares in the key row and key column is less
than the corresponding intersection element represented by a circle; the sum of the key
distances is written instead of the intersection distance.

13 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm
After n steps, we determine the shortest path between nodes i and j from the matrices
Dn and Sn using the following rules:

1. In matrix Dn; dij gives the shortest path between nodes i and j .

2. In the Sn matrix; the intermediate node k = sij that gives the path i → k → j is
determined. If sik = k and skj = j , stop; all intermediate nodes of the path have
been found. Otherwise, the procedure is repeated between nodes i and k and
between nodes k and j .

Example
Find the shortest paths between both nodes for the network in the figure. Distances are
given on the arcs in km. Link (3, 5) is directional with no traffic from node 5 to node 3.
All the other arcs allow two-way traffic.

14 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

▶ Iteration 0: The matrices D0 and S0 give the initial representation of the
network. Since there is no traffic from node 5 to node 3, D0 is symmetric
except that d53 = ∞.

D0 1 2 3 4 5
1
2 − ∞ 5 ∞
3 ∞ − 6 15
4 5 6 − 4
5 ∞ ∞ 4 −

S0 1 2 3 4 5
1 − 2 3 4 5
2 1 − 3 4 5
3 1 2 − 4 5
4 1 2 3 − 5
5 1 2 3 4 −

15 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

▶ Iteration 1: To obtain D1 and S1 from D0 and S0,

1. Replacing d23 with d21 + d13 = 3 + 10 = 13 and setting
s23 = 1,

2. Replacing d32 with d31 + d12 = 10 + 3 = 13 and setting
s32 = 1,

is required. These changes are shown in bold in the D1 and S1 matrices.

D1 1 2 3 4 5
1 − 10 ∞ ∞
2
3 10 − 6 15
4 ∞ 6 − 4
5 ∞ ∞ 4 −

S1 1 2 3 4 5
1 − 2 3 4 5
2 1 − 1 4 5
3 1 1 − 4 5
4 1 2 3 − 5
5 1 2 3 4 −

16 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

▶ Iteration 2: k = 2 is determined as shown by red rows and columns in
D1. Triple operation is applied to the elements circled in the cell in D1

and S1. The changes are shown in bold in D2 and S2.

D2 1 2 3 4 5
1 − 3 8 ∞
2 3 − 5 ∞
3
4 8 5 − 4
5 ∞ ∞ 4 −

S2 1 2 3 4 5
1 − 2 3 2 5
2 1 − 1 4 5
3 1 1 − 4 5
4 2 2 3 − 5
5 1 2 3 4 −

17 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

▶ Iteration 3: k = 3 is determined as shown by red rows and columns in
D2. The new matrices are given by D3 and S3.

D3 1 2 3 4 5
1 − 3 10 25
2 3 − 13 28

3 10 13 − 15
4
5 ∞ ∞ ∞ −

S3 1 2 3 4 5
1 − 2 3 2 3
2 1 − 1 4 3
3 1 1 − 4 5
4 2 2 3 − 5
5 1 2 3 4 −

18 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm

▶ Iteration 4: k = 4 is determined as shown by red rows and columns in
D3. The new matrices are given by D4 and S4.

D4 1 2 3 4 5
1 − 3 10 8
2 3 − 11 5
3 10 11 − 6
4 8 5 6 −
5

S4 1 2 3 4 5
1 − 2 3 2 4
2 1 − 4 4 4
3 1 4 − 4 4
4 2 2 3 − 5
5 4 4 4 4 −

▶ Iteration 5: k = 5 is determined as shown by red rows and columns in
D4. There is no improvement in this iteration.

19 / 24 Gökhan Göksu, PhD MTM4501



Floyd’s Algorithm
D4 1 2 3 4 5
1 − 3 10 8
2 3 − 11 5
3 10 11 − 6
4 8 5 6 −
5

S4 1 2 3 4 5
1 − 2 3 2 4
2 1 − 4 4 4
3 1 4 − 4 4
4 2 2 3 − 5
5 4 4 4 4 −

The final matrices D4 and S4 contain all the information to determine the short-
est path between any two nodes in the network. For example, the shortest
distance from node 1 to node 5 is d15 = 12.

To determine the path for this, the element (i, j) simply indicates a direct con-
nection since sij = j . Otherwise i and j must be connected with at least another
node. Since s15 = 4 and s45 = 5, the path is initially given as 1 → 4 → 5.
Since s14 ̸= 4, the (1, 4) segment is not a direct connection and intermediate
nodes must be determined. Given s14 = 2 and s24 = 4, the path 1 → 4 is
replaced by path 1 → 2 → 4. Since s12 = 2 and s24 = 4, there is no other
intermediate node.

The combined result gives the optimal path as 1 → 2 → 4 → 5. The length of
this road is 12 km.

20 / 24 Gökhan Göksu, PhD MTM4501



Linear Programing Formulation of the Shortest Path Algorithms

Consider the network with capacity G = (N,A). Here N is the set of nodes, A
is the set of arcs and the amount of flow is defined as

xij =i flow amount from node i to node j

=

{
1, if arc (i, j) is on the shortest path
0, otherwise

cij =i length of arc (i, j).

Accordingly, the linear programming formulation is as follows:

min z =
∑∑
(i,j)∈A

cijxij

subject to
(

External input
into node j

)
+

∑
i∈N

xij =

(
External output

from node j

)
+

∑
j∈N

xjk .

21 / 24 Gökhan Göksu, PhD MTM4501



Linear Programing Formulation of the Shortest Path Algorithms

Example
Show the linear programming formulation that determines the shortest path
from node 1 to node 2 in the network shown in the figure.

22 / 24 Gökhan Göksu, PhD MTM4501



Linear Programing Formulation of the Shortest Path Algorithms
For this formulation, unit input flow to node 1 and unit output flow to node 2
are marked.

According to the flow conservation equations, the following equations are writ-
ten for each node:

1 =x12 + x13 (Node 1)

x12 + x42 =x23 + 1 (Node 2)

x13 + x23 =x34 + x35 (Node 3)

x34 =x42 + x45 (Node 4)

x35 + x45 = 0 (Node 5)

23 / 24 Gökhan Göksu, PhD MTM4501



Linear Programing Formulation of the Shortest Path Algorithms
Accordingly, the linear programming problem is expressed as follows:

x12 x13 x23 x34 x35 x42 x45

min z = 100 30 20 10 60 15 50
Node 1 1 1 = 1
Node 2 -1 1 -1 = -1
Node 3 -1 -1 1 1 = 0
Node 4 -1 1 1 = 0
Node 5 -1 -1 = 0

In this table, it is important to note that there are +1 and -1 in each column.
This is a typical example of a network linear programming problem.

Optimal solution through a package program can be obtained as

z = 55, x13 = 1, x34 = 1, x42 = 1.

This means the shortest path from node 1 to node 2 is

1 → 3 → 4 → 2

and this indicates that the distance is z = 55 km.

24 / 24 Gökhan Göksu, PhD MTM4501


