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Historical Background

The conditions known as the KKT Conditions were first
published in 1951 by Princeton University professors,
American mathematician Harold William Kuhn and
Canadian mathematician Albert William Tucker.

H. W. Kuhn and A. W. Tucker.
Nonlinear Programming.
Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, 481–492,
University of California Press, Berkeley, California,
1951.
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Historical Background

Then, over time, it was realized that the necessary
conditions of the nonlinear optimization problem were
stated in the 1939 master’s thesis of William Karush, who
was then a graduate student at the University of Chicago.

W. Karush.
Minima of Functions of Several Variables with
Inequalities as Side Constraints.
MSc Thesis, Chicago University, Dept. of Mathematics,
Chicago, Illinois.
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Problem Statement

The mathematical formulation of the problem of finding the
minimum (maximum) of a given function under equality
and inequality constraints is as follows:

minimize
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, ...,m
hj(x) = 0, j = 1, ..., ℓ
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KKT Conditions

The necessary conditions for the optimal solution of the
nonlinear optimization problem are examined in four main
conditions:

Stationarity Condition:
To minimize f (x):
∇f (x∗)−

∑m
i=1 µi∇gi(x∗)−

∑ℓ
j=1 λj∇hj(x∗) = 0,

To maximize f (x):
−∇f (x∗)−

∑m
i=1 µi∇gi(x∗)−

∑ℓ
j=1 λj∇hj(x∗) = 0,

Primary Feasibility Condition:
gi(x∗) ≤ 0, i = 1, ...,m
hj(x∗) = 0, j = 1, ..., ℓ
Dual Feasibility Condition:
µi ≥ 0, i = 1, ...,m
Complementary Slackness Condition:
µigi(x∗) = 0, i = 1, ...,m.
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KKT Conditions

Moreover,
if f (νx1 + (1 − ν)x2) ≤ νf (x1) + (1 − ν)f (x2) holds for any
x1 ̸= x2 from the domain of the function f with some
ν ∈ [0,1], i.e. f (x) is a convex function,
if gi(νix1 + (1 − νi)x2) ≤ νigi(x1) + (1 − νi)gi(x2) holds for
any x1 ̸= x2 from the domain of each gi function with some
νi ∈ [0,1], i.e. gi(x)’s are convex functions,
if hi ’s are linear functions,

then, these conditions are also sufficient conditions.
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Examples

Example 1
Examine whether the minimization problem given below
satisfies the KKT conditions under the given constraints.

min f (x1, x2) = 4x2
1 + 2x2

2

subject to 3x1 + x2 = 8

→ h(x1, x2) = 3x1 + x2 − 8 = 0,

2x1 + 4x2 ≤ 15

→ g(x1, x2) = 2x1 + 4x2 − 15 ≤ 0.
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Examples - Example 1

Stationarity Condition:

∇f − µ∇g − λ∇h =

[
8x1 − 2µ− 3λ
4x2 − 4µ− λ

]
=

[
0
0

]
Primal Feasibility Condition:
3x1 + x2 = 8
2x1 + 4x2 ≤ 15
Dual Feasibility Condition:
µ ≥ 0
Complementary Slackness Condition:
µ(2x1 + 4x2 − 15) = 0.
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

µ > 0

8x1 − 2µ− 3λ = 0
4x2 − 3µ− λ = 0

3x1 + x2 = 8
2x1 + 4x2 = 15



→


8 0 −2 −3
0 4 −4 −1
3 1 0 0
2 4 0 0

 =


x1
x2
µ
λ

 =


0
0
8
15



The solution will be x1 = 17
10 , x2 = 29

10 , µ = 53
25 and λ = 78

25 .

f (17/10,29/10) = 1419
50
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

µ = 0

8x1 − 3λ = 0
4x2 − λ = 0

3x1 + x2 = 8



→

8 0 −3
0 4 −1
3 1 0

 =

x1
x2
λ

 =

0
0
8



The solution will be x1 = 24
11 , x2 = 16

11 , µ = 0 and λ = 64
11 .

f (24/11,16/11) = 256
11 → Global Minimum ✓
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Examples - Example 1

Here,

f (x1, x2) = 4x2
1 + 2x2

2 is a convex function,
g(x1, x2) = 2x1 + 4x2 − 15 is a convex function,
h(x1, x2) = 3x1 + x2 − 8 is a linear function.
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Examples

Example 2
Examine whether the following KKT conditions are met for the
revenue optimization problem of a company trying to maximize its
revenues (R(Q)) under a certain minimum profit constraint
(Gmin ≤ R(Q)− C(Q)).

min f (Q) = −R(Q)

subject to Gmin ≤ R(Q)− C(Q)

→ g1(Q) = Gmin − R(Q) + C(Q) ≤ 0,

Q ≥ 0

→ g2(Q) = −Q ≤ 0.
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Examples - Example 2

Stationarity Condition:
− dR

dQ − µ1

[
− dR

dQ + dC
dQ

]
− µ2(−1) = 0

→ (µ1 − 1) dR
dQ − µ1

dC
dQ + µ2 = 0,

Primal Feasibility Condition:
Gmin − R(Q) + C(Q) ≤ 0,
−Q ≤ 0.
Dual Feasibility Condition:
µ1, µ2 ≥ 0,
Complementary Slackness Condition:
µ1(Gmin − R(Q) + C(Q)) = 0,
µ2Q = 0.

→ µ2 = 0.
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Examples - Example 2

Since µ2 = 0 is satisfied, we have

dC
dQ = µ1−1

µ1

dR
dQ ,

which indicates that marginal revenue of the company is
greater than its marginal costs.
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