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Historical Background

@ The conditions known as the KKT Conditions were first
published in 1951 by Princeton University professors,
American mathematician Harold William Kuhn and
Canadian mathematician Albert William Tucker.

@ [ H.W. Kuhn and A. W. Tucker.
Nonlinear Programming.
Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, 481-492,
University of California Press, Berkeley, California,
1951.
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Historical Background

@ Then, over time, it was realized that the necessary
conditions of the nonlinear optimization problem were
stated in the 1939 master’s thesis of William Karush, who
was then a graduate student at the University of Chicago.

@ [§ W.Karush.
Minima of Functions of Several Variables with
Inequalities as Side Constraints.

MSc Thesis, Chicago University, Dept. of Mathematics,
Chicago, lllinois.
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Problem Statement

@ The mathematical formulation of the problem of finding the
minimum (maximum) of a given function under equality
and inequality constraints is as follows:

minimize f(X)
XER"
subject to gj(x) <0, i=1,...m
h(x)=0,j=1,..¢
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KKT Conditions

@ The necessary conditions for the optimal solution of the
nonlinear optimization problem are examined in four main
conditions:

e Stationarity Condition:
@ To minimize f(x):
VAX) = S0 iV Gi(X") = Sy A VA(XT) =0,
@ To maximize f(x):
—VI(x*) = 37 wiVai(x*) = Y A Vh(x*) =0,
e Primary Feasibility Condition:
gi(x*)<0,i=1,..m
hi(x*)=0,j=1,...¢
e Dual Feasibility Condition:
wi>0,i=1,...m
o Complementary Slackness Condition:
wigi(x*)=0,i=1,..,m.
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KKT Conditions

@ Moreover,

o if f(uxy + (1 —v)x2) < vf(Xq1) + (1 — v)f(x2) holds for any
Xq # Xo from the domain of the function f with some
v € [0,1], i.e. f(x) is a convex function,

o if g,‘(l/,'X1 + (1 — I/,‘)XQ) < l/,'g,'(X1) + (1 — l/,')g,'(Xg) holds for
any X1 # Xo from the domain of each g; function with some
v; € [0,1], i.e. gi(x)’s are convex functions,

e if hy's are linear functions,

then, these conditions are also sufficient conditions.
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Examples

Examine whether the minimization problem given below
satisfies the KKT conditions under the given constraints.

min f(x1, Xp) = 4xZ + 2x3
subject to 3xq + Xo = 8
2x1 +4x, <15
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Examples

Examine whether the minimization problem given below
satisfies the KKT conditions under the given constraints.

min f(x1, Xp) = 4xZ + 2x3
subject to 3x1 + X0 =8  — hA(xy,X2) =3x1 + X0 — 8 =0,
2x1 +4x2 <15 = g(xq1,X2) = 2x1 +4x2 — 15 < 0.
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Examples - Example 1
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Examples - Example 1

@ Stationarity Condition:

o o, [Bxi—2u-3A] o
A A
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Examples - Example 1

@ Stationarity Condition:
B _ _[8x1 —2p—3X] [0
R
@ Primal Feasibility Condition:
3X1 +x =28
2x1 +4x, < 15
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Examples - Example 1

@ Stationarity Condition:
B _ _|8xy—2u—3X] [0

Vf—puVg—AVh= [4X2_4M_A] = [0]
@ Primal Feasibility Condition:

3X1 +x =28

2x1 +4x, < 15
@ Dual Feasibility Condition:

u=>0
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Examples - Example 1

@ Stationarity Condition:
B _ _|8xy—2u—3X] [0
Vf— Vg —AVh= [4X2_4M_A] = [0]
@ Primal Feasibility Condition:
3X1 +x =28
2x1 +4x, < 15
@ Dual Feasibility Condition:
u=>0
@ Complementary Slackness Condition:
M(2X1 +4x — 15) =0.
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

e >0

8x1 —2u—-3X2=0
4 —3u—A=0
3X1 +x =28

2X1 +4x> =15
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

e >0
8xi—21-32=0) rg 0 2 3] [x 0
4X2—3,u—)\:0 N 0 4 -4 -1 X 0
3xi+x=8[ |31 0 0| |u|l” |8
24 0 0 NERAE

2xy +4x, =15
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

e >0
8xi—21-32=0) rg 0 2 3] [x 0
4X2—3,u—)\:0 N 0 4 -4 -1 X 0
3% +x =8 31 0 0 |u|l |8
2X1 + 4xp = 15 2400 Al LIS

@ The solution will be x; = 15, X2 =
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

e >0
8xi—21-32=0) rg 0 2 3] [x 0
4X2—3,u—)\:0 N 0 4 -4 -1 X 0
3% +x =8 31 0 0 |u|l |8
2X1 + 4xp = 15 2400 Al LIS

@ The solution will be x; = 15, X2 =
e f(17/10,29/10) = 1&1°
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

o u=0
8x1 —3A=0
4X2—)\:0
3Xi +x =28
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

o u=0
8x; —3A =0 8 0 -3 X4 0
4 —A=0p— |0 4 —1| = |[x2| = |0

3x1+Xx> =28 3 1 0
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

o u=0
8x; —3A =0 8 0 -3 X4 0
4 —A=0p— |0 4 —1| = |[x2| = |0

3x1+Xx> =28 3 1 0 A 8

@ The solution will be x; = 2%, xo = 18, = 0and A = &.
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Examples - Example 1

There will be two cases, based on the dual feasibility condition
and the complementary slackness condition:

o u=0
8x; —3A =0 8 0 -3 X4 0
4 —A=0p— |0 4 —1| = |[x2| = |0
3x1+Xx> =28 3 1 0 A 8

@ The solution will be x; = 2%, xo = 18, = 0and A = &.

o f(24/11,16/11) = 25 — Global Minimum v/
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Examples - Example 1

Here,
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Examples - Example 1

Here,
@ f(x1,x2) = 4x2 + 2x2 is a convex function,
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Examples - Example 1

Here,
@ f(x1,x2) = 4x2 + 2x2 is a convex function,
@ g(x1,Xx2) = 2x1 + 4x2 — 15 is a convex function,

H. Gonce Kogken, G. Goksu MTM4502



Examples - Example 1

Here,
@ f(x1,x2) = 4x2 + 2x2 is a convex function,
@ g(x1,Xx2) = 2x1 + 4x2 — 15 is a convex function,
@ h(xq,Xx2) = 3x1 + xo — 8 is a linear function.
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Examples

Examine whether the following KKT conditions are met for the
revenue optimization problem of a company trying to maximize its
revenues (R(Q)) under a certain minimum profit constraint

(Gmin < R(Q) - C(Q))

min f(Q) = —R(Q)
subject to Gnin < R(Q) — C(Q)
Q>0
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Examples

Examine whether the following KKT conditions are met for the
revenue optimization problem of a company trying to maximize its
revenues (R(Q)) under a certain minimum profit constraint

(Gmin < R(Q) - C(Q))

min f(Q) = —R(Q)
subject to Gmin < R(Q) — C(Q) — g1(Q) = Gmin — R(Q) + C(Q) <0,
Q>0 - 3(Q)=-Q<0.
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Examples - Example 2
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Examples - Example 2

@ Stationarity Condition:
_%—M{—%Jr%} —p2(=1)=0
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Examples - Example 2

@ Stationarity Condition:
_%—M{—%Jr%} —p2(=1)=0

= (1~ )G —m G +H2=0,
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Examples - Example 2

@ Stationarity Condition:
—%—m[—%Jr%} —p2(=1)=0
— (11 —1)%8 — 115G + 12 =0,

@ Primal Feasibility Condition:

Gmin - R(Q) + C(Q) < 01
-Q<0.
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Examples - Example 2

@ Stationarity Condition:
—%—m[—%Jr%} —p2(=1)=0
— (11 —1)%8 — 115G + 12 =0,

@ Primal Feasibility Condition:

Gmin — R(Q) + C(Q) <0,
-Q<o0.

@ Dual Feasibility Condition:

piy 2 > 0,
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Examples - Example 2

@ Stationarity Condition:
—%—m[—%Jr%} —p2(=1)=0
= (1 = 1) — 119G + n2 =0,

@ Primal Feasibility Condition:

Gmin — R(Q) + C(Q) <0,
-Q<0.

@ Dual Feasibility Condition:
piy 2 > 0,

@ Complementary Slackness Condition:
M1(Gmin - R(Q) + C(Q)) = 05
12Q = 0.
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Examples - Example 2

@ Stationarity Condition:
—%—m[—%Jr%} —p2(=1)=0
= (1 = 1) — 119G + n2 =0,

@ Primal Feasibility Condition:

Gmin — R(Q) + C(Q) <0,
-Q<0.

@ Dual Feasibility Condition:
piy 2 > 0,

@ Complementary Slackness Condition:
M1(Gmin - R(Q) + C(Q)) = 05
u2Q=0. — pup =0.
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Examples - Example 2

Since u» = 0 is satisfied, we have
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Examples - Example 2

Since u» = 0 is satisfied, we have

'Y dc _ p—1dR
aQ —  py dQ’
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Examples - Example 2

Since u» = 0 is satisfied, we have
'Y dc _ p—1dR
aQ —  py dQ’
@ which indicates that marginal revenue of the company is

greater than its marginal costs.

MTM4502
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