Recent Results in Infinite-Dimensional Optimization

Gökhan Göksu^a (Joint Work with Alessio Moreschini^b and Thomas Parisini^{b,c,d})

> aDepartment of Mathematical Engineering, Yıldız Technical University, Türkiye **bDepartment Electrical and Electronic Engineering,** Imperial College London, London, UK ^cKIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus ^dDipartimento Ingegneria e Architettura, Università di Trieste, Trieste, Italy

MTM4502 - Optimization Techniques / Research Seminar

1 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-24-0)

 $(1 + 4\sqrt{3})$

 QQ

Introduction

Discrete Gradient in Finite-Dimensional Context

 $\mathsf A$ **discrete gradient** is a continuous operator $\bar{\nabla} \mathcal S : \mathbb R^n \times \mathbb R^n \to \mathbb R$ such that for all pairs $x_1, x_2 \in \mathbb{R}^n$

$$
\langle x_1 - x_2, \overline{\nabla} S(x_1, x_2) \rangle = S(x_1) - S(x_2), \text{ (Mean Value Property)}
$$

$$
\lim_{x_2 \to x_1} \overline{\nabla} S(x_1, x_2) = \nabla S(x_1), \text{ (Continuity Property)}
$$

- $\triangleright \triangleright \triangleright \triangleright$ is the Euclidean gradient (vector differential operator),
- \blacktriangleright $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product.
- ▶ Introduced by Gonzalez (1996).
- ▶ Address loss of energy conservation in numerical solutions
- ▶ Multiple discrete gradient operators proposed for higherdimensional spaces: Gonzalez (1996), Harten et. al. (1983), Itoh and Abe (1988), Moreschini et al. (2024).

Introduction

Significance in Numerical Optimization and Challenges in Infinite-Dimensional Spaces

Significance:

- ▶ Observed discrepancy between continuous and discrete dynamics
- \triangleright Discrete gradient maintains properties like energy conservation and Lyapunov functions
- \blacktriangleright Stability in optimization methods
- ▶ Finite-dimensional discrete gradient method for convex optimization

Challenges:

- ▶ Optimization Over Infinite-Dimensional Spaces
- ▶ Lack of formal definition of discrete gradient for infinite-dimensional spaces
- ▶ Sensitivity of existing gradient-based methods to time step

Notation and Definitions: Fréchet Derivative

- \triangleright $\mathcal{C}([a, b], \mathbb{R}^n)$: set of continuous functions
- ▶ For any $\phi_1, \phi_2 \in \mathcal{C}([a, b], \mathbb{R}^n)$, the inner product is defined by

$$
\langle \phi_1, \phi_2 \rangle \coloneqq \int_a^b \phi_2^\top(s) \cdot \phi_1(s) ds.
$$

Definition (Fréchet Derivative)

Any functional S : $\mathcal{C}([a, b], \mathbb{R}^n)$ → $\mathbb R$ is said to be Fréchet differentiable at $\phi_0 \in \mathcal{C}([a, b], {\mathbb R}^n)$ if there exists a bounded linear operator $\nabla_{\mathcal{F}} S(\phi_0)$: $\mathcal{C}([a, b], \mathbb{R}^n) \to \mathbb{R}$ such that

$$
\lim_{\|\phi\|\to 0^+}\frac{|S(\phi_0+\phi)-S(\phi_0)-\nabla_{\digamma}S(\phi_0)(\phi)|}{\|\phi\|}=0.
$$

The operator ∇*FS*(ϕ0) is called the **Fréchet derivative evaluated at** $\phi_0 \in \mathcal{C}([a, b], \mathbb{R}^n)$, or simply Fréchet derivative when it is clear from the context. KOD KAP KED KED E YA G

Definitions: Second Order Fréchet Derivative

Definition (Second Order Fréchet Derivative)

Any functional $S : C([a, b], \mathbb{R}^n) \to \mathbb{R}$ is said to be twice Fréchet differentiable at $\phi_0 \in C([a, b], \mathbb{R}^n)$ if there exists a bounded linear $\mathsf{operator} \ \nabla^2_F \mathcal S(\phi_0) \ : \ \mathcal C([a,b],\mathbb R^n) \times \mathcal C([a,b],\mathbb R^n) \ \to \ \mathbb R$ uniformly for $\phi_1 \in \mathcal{C}([{\bm a}, {\bm b}], {\mathbb R}^n)$ on bounded sets of $\mathcal{C}([{\bm a}, {\bm b}], {\mathbb R}^n)$ such that

$$
\lim_{\|\phi_2\|\to 0^+}\frac{1}{\|\phi_2\|}\Big(|\nabla_F S(\phi_0+\phi_2)(\phi_1)-\nabla_F S(\phi_0)(\phi_1)\\-\nabla_F^2S(\phi_0)(\phi_1,\phi_2)|\Big)=0.
$$

The operator ∇² *^FS*(ϕ0) is called the **second order Fréchet derivative** $\boldsymbol{\mathsf{evaluated}}$ at $\phi_{\boldsymbol{0}}\in \mathcal{C}([a,b],\mathbb{R}^n)$, or simply second order Fréchet derivative when it is clear from the context.

Illustrative Example: Fréchet Derivatives

Consider the following functional, defined for all $\phi \in \mathcal{C}([a, b], \mathbb{R}^n)$,

$$
S(\phi) = ||\phi||^2 = \int_{a}^{b} |\phi(s)|^2 ds.
$$
 (4)

The first and the second order Fréchet derivatives of [\(4\)](#page-5-0) are given for all $\varphi \in \mathcal{C}([a,b],\mathbb{R}^n)$ and for all $(\varphi_1,\varphi_2) \in \mathcal{C}([a,b],\mathbb{R}^n) \times$ $\mathcal{C}([a, b], \mathbb{R}^n)$ by

$$
\nabla_F S(\phi)(\varphi) = \int_a^b 2\varphi^\top(s)\phi(s)ds,\tag{5}
$$

$$
\nabla^2_{\mathcal{F}} S(\phi)(\varphi_1, \varphi_2) = \int_a^b 2\varphi_1^{\top}(s)\varphi_2(s)ds.
$$
 (6)

6 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

Riesz "Gradient" and "Hessian" Representation Theorems

Lemma (Riesz Representation Theorem)

Let $\nabla_F S(\phi_0)$ be a bounded linear mapping defined as in Defi-*nition [1.](#page-3-0) Then, there exists a* $\nabla_R S(\phi_0) \in C([a, b], \mathbb{R}^n)$ *such that the following holds, for every* $\varphi \in C([a, b], \mathbb{R}^n)$,

$$
\nabla_F \mathcal{S}(\phi_0)(\varphi) = \langle \nabla_{\mathcal{B}} \mathcal{S}(\phi_0), \varphi \rangle.
$$

Lemma (Riesz "Hessian" Representation Theorem)

Let ∇² *^FS*(ϕ0) *be a bounded linear operator defined as in Definition [2.](#page-4-0) Then, there exists a bounded linear operator* $\nabla^2_B S(\phi_0)$: $\mathcal{C}([a, b], \mathbb{R}^n) \rightarrow \mathcal{C}([a, b], \mathbb{R}^n)$ such that for every $\varphi_1, \varphi_2 \in \mathcal{C}([a, b], \mathbb{R}^n)$ we have

$$
\nabla_F^2 S(\phi_0)(\varphi_1,\varphi_2)=\langle \nabla_R^2 S(\phi_0)(\varphi_2),\varphi_1\rangle.
$$

Illustrative Example: Riesz "Gradient" and "Hessian" Representation Theorems

The Fréchet derivatives of the functional

$$
S(\phi) = ||\phi||^2 = \int_a^b |\phi(s)|^2 ds
$$

were

$$
\nabla_F S(\phi)(\varphi) = \int_a^b 2\varphi^\top(s)\phi(s)ds,\tag{5}
$$

$$
\nabla^2_{\mathcal{F}} S(\phi)(\varphi_1, \varphi_2) = \int_a^b 2\varphi_1^{\top}(s)\varphi_2(s)ds.
$$
 (6)

Here, invoking Riesz "Gradient" and "Hessian" Representation Theorems for [\(5\)](#page-5-1) and [\(6\)](#page-5-2), we obtain the representations

$$
\nabla_R S(\phi) = 2\phi, \ \forall \phi \in C([a, b], \mathbb{R}^n),
$$

$$
\nabla_R^2 S(\phi)(\varphi) = 2\varphi, \ \forall \phi, \varphi \in C([a, b], \mathbb{R}^n).
$$

Fréchet Discrete Gradient and Hessian

The infinite-dimensional counterpart of the discrete gradient is understood as a discrete vector representation of the Fréchet derivative $\nabla_{\digamma}S(\phi)$ in $\mathcal{C}([a,b],\mathbb{R}^n).$

Definition (Fréchet Discrete Gradient)

Given a Fréchet differentiable functional $\mathcal{S}:\mathcal{C}([a,b],\mathbb{R}^n)\to\mathbb{R}$ and $\nabla_{B}\mathcal{S}(\phi_0)\in\mathcal{S}$ $\mathcal{C}([a, b], \mathbb{R}^n)$, a **Fréchet discrete gradient** is a bounded linear operator $\bar{\nabla}S$ such that for all $\phi, \varphi \in \mathcal{C}([a, b], \mathbb{R}^n)$

$$
\langle \phi - \varphi, \overline{\nabla} S(\phi, \varphi) \rangle = S(\phi) - S(\varphi),
$$

\n
$$
\lim_{\varphi \to \phi} \overline{\nabla} S(\phi, \varphi) = \nabla_B S(\phi).
$$

Definition (Fréchet Discrete Hessian)

Given a twice Fréchet differentiable functional $S : C([a, b], \mathbb{R}^n) \to \mathbb{R}$ and $\nabla^2_B S(\phi_0)$, a **Fréchet discrete Hessian** is a bounded linear ope-rator $\bar{\nabla}^2 S$ such that for all $\phi, \varphi, \psi \in C([a, b], \mathbb{R}^n)$

$$
S(\psi) - S(\varphi) = \langle \psi - \varphi, \bar{\nabla}S(\phi, \varphi) + \bar{\nabla}^2 S(\phi, \varphi, \psi)(\psi - \varphi) \rangle,
$$

\n
$$
\lim_{\psi \to \varphi} \bar{\nabla}^2 S(\phi, \varphi, \psi) = \nabla_B^2 S(\phi)(\varphi).
$$

9 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

Main Result: Fréchet Discrete Gradient 1

Proposition

Let S be a Fréchet differentiable functional. Suppose there exist functionals V and W such that

i)
$$
\int_{a}^{b} V(\phi(s), \varphi(s)) ds = S(\phi) - S(\varphi),
$$

\n*ii)*
$$
\langle \phi - \varphi, W(\phi, \varphi) \rangle = 0,
$$

\n*iii)*
$$
\lim_{\varphi \to \phi} \frac{V(\phi, \varphi)}{\|\phi - \varphi\|^2} (\phi - \varphi) = \nabla_B S(\phi) - W(\phi, \phi).
$$

Then, $\bar{\nabla}S(\phi,\varphi) = \frac{V(\phi,\varphi)}{\|\phi-\varphi\|^2}(\phi-\varphi) + W(\phi,\varphi)$ *is a Fréchet discrete gradient.*

10 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

Main Result: Fréchet Discrete Hessian 1

Proposition

Let S be a twice Fréchet differentiable functional. Suppose there exist skew-symmetric operators K₁ and K₂ such that

$$
\lim_{\psi \to \varphi} \Sigma(\phi, \varphi, \psi) = \nabla_R^2 S(\phi)(\varphi) - K_1(\varphi, \varphi),
$$
\n
$$
\Sigma(\phi, \varphi, \psi) := (\bar{\nabla} S(\psi, \varphi) - \bar{\nabla} S(\phi, \varphi)) \frac{(\psi - \varphi)^{\top}}{\|\psi - \varphi\|^2} + (\bar{\nabla} S(\psi, \varphi) - \bar{\nabla} S(\phi, \varphi)) (\psi - \varphi)^{\top} K_2(\phi, \varphi, \psi).
$$

Then, $\bar{\nabla}^2 S(\phi, \varphi, \psi) = K_1(\varphi, \psi) + \Sigma(\phi, \varphi, \psi)$ *is a Fréchet discrete Hessian.*

11 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

イロン イ何ン イヨン イヨン 一ヨー

 QQ

Main Result: Fréchet Discrete Gradient 2 (For the Functionals in Integral Form)

Proposition

Let S be a Fréchet differentiable functional defined as

$$
S(\phi)=\int_a^b\sigma(\phi(s))\,ds,
$$

where $\sigma : \mathbb{R}^n \to \mathbb{R}$. The bounded linear operator

$$
\bar{\nabla} S := (\nabla_{d_1} S, \cdots, \nabla_{d_n} S)^{\top},
$$

where ∇_d *S*(ϕ, ψ) *is defined as*

$$
\nabla_{d_1} S(\phi, \psi) = \frac{\sigma(\phi_1, \psi_2, \cdots, \psi_n) - \sigma(\psi_1, \cdots, \psi_n)}{\phi_1 - \psi_1},
$$

\n
$$
\nabla_{d_n} S(\phi, \psi) = \frac{\sigma(\phi_1, \cdots, \phi_n) - \sigma(\phi_1, \cdots, \phi_{n-1}, \psi_n)}{\phi_n - \psi_n},
$$

\n
$$
\nabla_{d_i} S(\phi, \psi) = \frac{\sigma(\phi_1, \cdots, \phi_i, \psi_{i+1}, \cdots, \psi_n) - \sigma(\phi_1, \cdots, \phi_{i-1}, \psi_i, \cdots, \psi_n)}{\phi_i - \psi_i},
$$

is a Fréchet discrete gradient.

12 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

KO KARK KEK KEK E YOKA

Main Result: Fréchet Discrete Gradient 3

Proposition

Let S be a Fréchet differentiable functional. Assume that for any $\phi, \varphi \in \mathcal{C}([a, b], \mathbb{R}^n)$ and all $\xi \in (0, 1)$, the convex combination $\xi\phi + (1 - \xi)\varphi$ is contained in $\mathcal{C}([a, b], \mathbb{R}^n)$. Then, the bounded *linear operator*

$$
\bar{\nabla}S(\phi,\varphi)=\begin{bmatrix} \int_0^1 \left[\nabla_B S(\xi\phi+(1-\xi)\varphi)\right]_1 d\xi \\ \vdots \\ \int_0^1 \left[\nabla_B S(\xi\phi+(1-\xi)\varphi)\right]_n d\xi \end{bmatrix},
$$

is a Fréchet discrete gradient.

Illustrative Example: Fréchet Discrete Gradient

Consider the functional

$$
S(\phi) = \int_a^b (\phi_1(s) - f_1(s))^4 + (\phi_2(s) - f_2(s))^2 ds,
$$

where $f_1, f_2 \in \mathcal{C}([a, b], \mathbb{R})$. The Fréchet derivative is

$$
\nabla_R S(\phi) = \begin{bmatrix} 4(\phi_1 - f_1)^3 \\ 2(\phi_2 - f_2) \end{bmatrix}.
$$

The Fréchet discrete gradient is given by

$$
\bar{\nabla}S(\phi,\varphi)=\left[\begin{aligned} &\left(\left(\phi_1-f_1\right)^2+\left(\varphi_1-f_1\right)^2\right)\left(\phi_1+\varphi_1-2f_1\right)\\ &\left(\phi_2+\varphi_2-2f_2\right)\end{aligned}\right]
$$

14 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

.

Infinite Dimensional Optimization Problem and Fréchet Discrete Gradient Method

Consider the unconstrained optimization problem

 $\text{min}_{\phi \in \mathcal{C}([a,b],\mathbb{R}^n)} \mathcal{S}(\phi),$

where S : $\mathcal{C}([a, b], \mathbb{R}^n) \to \mathbb{R}$ is the objective functional.

Given an objective functional S and an initial guess $\phi_0 \in \mathcal{C}([a, b], \mathbb{R}^n),$ the **Fréchet discrete gradient method** is

$$
\phi_{k+1} = \phi_k - \tau_k \bar{\nabla} S(\phi_{k+1}, \phi_k),
$$

where $\tau_k > 0$ is a *k*-varying time step.

KORKARK KERKEL DRA

Definitions: Lower Semi-Continuity, Coercivity, Convexity/Strict Convexity

Definition

Let X be a Banach space. A functional $S: X \to \mathbb{R}$ is **lower semi-continuous** at $\phi \in \mathcal{X}$ if

$$
S(\underline{\phi}) \leq \liminf_{k \to \infty} S(\phi)
$$

for all sequences $\{\phi_k\}_{k\in\mathbb{N}} \in \mathcal{X}$ such that $\phi_k \to \phi$.

Definition

A functional $S : \mathcal{X} \to \mathbb{R}$ is **coercive** if $\lim_{||\phi|| \to \infty} S(\phi) = \infty$.

Definition

Let X be a non empty convex subset of $C([a, b], \mathbb{R}^n)$. A functional S : $\mathcal{C}([a, b], \mathbb{R}^n) \to \mathbb{R}$ is convex if for all $\alpha \in [0, 1]$ and for all $\phi, \varphi \in \mathcal{X}$

$$
S(\alpha\phi + (1-\alpha)\varphi) \leq \alpha S(\phi) + (1-\alpha)S(\varphi).
$$

The functional *S* is **strictly convex** if the above inequality holds tight for all $\phi \neq \varphi$ and $\alpha \in (0, 1)$.

KO KARK KEK KEK E YOKA

Main Result: Conditions for Convergence 1

Theorem

Let X *be a non-empty, convex, strongly closed, and bounded* subset of $C([a, b], \mathbb{R}^n)$. Suppose S is convex, lower semi*continuous, and Fréchet differentiable on every bounded subset of* X . Then any sequence $\{\phi_k\}$ generated by the Fréchet dis*crete gradient method is a (locally) minimizing sequence for S*

 $S(\phi_k) \to \inf_{\mathcal{X}} S(\phi)$.

Moreover, for all $\phi_{k+1} \neq \phi_k$

$$
S(\alpha\phi_{k+1}+(1-\alpha)\phi_k)\leq S(\phi_k).
$$

17 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

Main Result: Conditions for Convergence 2

Corollary

Suppose S is strictly convex, lower semi-continuous, and Fréchet differentiable on every bounded subset of X *. Then any sequence* {ϕ*^k* } *generated by the Fréchet discrete gradient method converges to the singleton set* inf $_X S(\phi)$ *. Moreover, for all* $\phi_{k+1} \neq \phi_k$

$$
S(\alpha\phi_{k+1}+(1-\alpha)\phi_k)
$$

Illustrative Example

Consider the least-squares problem for an integral operator

$$
\min_{\phi \in \mathcal{C}([a,b],\mathbb{R}^2)} S(\phi) = \int_a^b \sum_{i=1}^2 (\phi_i(s) - f_i(s))^2 ds,
$$

where $f_1, f_2 \in \mathcal{C}([a, b], \mathbb{R})$.

The Fréchet derivative for all $\varphi_1, \varphi_2 \in C([a, b], \mathbb{R})$ is

$$
\nabla_F S(\phi)(\varphi) = \int_a^b \sum_{i=1}^2 2(\phi_i(s) - f_i(s)) \varphi_i(s) \, ds.
$$

The representation of the Fréchet derivative is

$$
\nabla_R \mathcal{S}(\phi) = 2(\phi - f),
$$

where

$$
f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, \quad \phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}
$$

19 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

KO KARK KEK KEK E YOKA

.

Illustrative Example

The Fréchet discrete gradient method for the integral operator yields

$$
\phi_{k+1} = \phi_k - \frac{2\tau_k}{1+\tau_k}(\phi_k - f).
$$

Consider $a = -1$, $b = 1$, and for all $x \in [-1, 1]$

$$
f = \begin{bmatrix} \sin(x) \\ \cos(x) \end{bmatrix}, \quad \phi_0 = \begin{bmatrix} \cos(4x) \\ \frac{4}{3} + \log(\sqrt[3]{x} + 1.2) \end{bmatrix}.
$$

20 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

KO KARK KEK KEK E YOKA

Illustrative Example: Error Analysis

Figure: Contour of the error norm $\|\phi_k - f\|$ for all iterations $k \in [0, 50]$ and learning rates $\tau \in [10^{-2},10^2]$. 4 ロ) (何) (日) (日)

21 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

 290

Illustrative Example: The Sequence {ϕ*k*}

Figure: Shape of the sequence $\{\phi_k\}$ for all iterations $k \in [0, 200]$ and learning rate $\tau = 10^{-2}$. 4 ロ } 4 6 } 4 \pm } 4 \pm } 4

22 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

 $2Q$

Conclusion

- ▶ The Fréchet discrete gradient method extends discrete gradient methods to infinite-dimensional spaces, providing effective tools for optimization with convergence guarantees.
- ▶ This study presents a novel approach to leverage the representation of Fréchet derivatives on Banach spaces by introducing Fréchet discrete operators to infinite-dimensional spaces.
- \blacktriangleright The main contributions include:
	- ▶ **Fréchet Discrete Gradient:** An extension of the discrete gradient concept by González et al. (1996) for finite-dimensional spaces.
	- ▶ **Fréchet Discrete Hessian:** An enhancement of the secondorder representation of the Fréchet derivative.
- \triangleright We provide the first insight into discrete gradient methods for convex optimization on infinite-dimensional spaces.
- ▶ Under mild conditions, any sequence generated by the discrete gradient method built on Fréchet discrete gradient operators achieves convergence for all finite learning rates.

Future Work

Further exploration and application of Fréchet discrete operators can lead to significant advancements in:

- ▶ Optimization theory
- ▶ Functional learning
- ▶ Optimal control problems and team theory (Zoppoli et al., 2020, Ch. 9)
- ▶ Data-driven model reduction, see Moreschini et al. (2023a,c), Simard et al. (2023), Moreschini et al. (2024)

THANK YOU! QUESTIONS?

25 / 25 Gökhan Göksu [Recent Results in Infinite-Dimensional Optimization](#page-0-0)

KO KA KE KE KE KE YA G