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Introduction
Discrete Gradient in Finite-Dimensional Context

A discrete gradient is a continuous operator ∇̄S : Rn ×Rn → R
such that for all pairs x1, x2 ∈ Rn

⟨x1 − x2, ∇̄S(x1, x2)⟩ = S(x1)− S(x2), (Mean Value Property)
lim

x2→x1
∇̄S(x1, x2) = ∇S(x1), (Continuity Property)

▶ ∇ is the Euclidean gradient (vector differential operator),
▶ ⟨·, ·⟩ is the standard Euclidean inner product.
▶ Introduced by Gonzalez (1996).
▶ Address loss of energy conservation in numerical solutions
▶ Multiple discrete gradient operators proposed for higher-

dimensional spaces: Gonzalez (1996), Harten et. al. (1983),
Itoh and Abe (1988), Moreschini et al. (2024).
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Introduction
Significance in Numerical Optimization and Challenges in Infinite-Dimensional Spaces

Significance:
▶ Observed discrepancy between continuous and discrete

dynamics
▶ Discrete gradient maintains properties like energy

conservation and Lyapunov functions
▶ Stability in optimization methods
▶ Finite-dimensional discrete gradient method for convex

optimization
Challenges:
▶ Optimization Over Infinite-Dimensional Spaces
▶ Lack of formal definition of discrete gradient for

infinite-dimensional spaces
▶ Sensitivity of existing gradient-based methods to time step
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Preliminaries
Notation and Definitions: Fréchet Derivative

▶ C([a,b],Rn): set of continuous functions

▶ For any ϕ1, ϕ2 ∈ C([a,b],Rn), the inner product is defined by

⟨ϕ1, ϕ2⟩ :=
∫ b

a
ϕ⊤2 (s) · ϕ1(s)ds.

Definition (Fréchet Derivative)
Any functional S : C([a,b],Rn) → R is said to be Fréchet differentiable
at ϕ0 ∈ C([a,b],Rn) if there exists a bounded linear operator ∇F S(ϕ0) :
C([a,b],Rn) → R such that

lim
∥ϕ∥→0+

|S(ϕ0 + ϕ)− S(ϕ0)−∇F S(ϕ0)(ϕ)|
∥ϕ∥

= 0.

The operator ∇F S(ϕ0) is called the Fréchet derivative evaluated at
ϕ0 ∈ C([a,b],Rn), or simply Fréchet derivative when it is clear from the
context.
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Preliminaries
Definitions: Second Order Fréchet Derivative

Definition (Second Order Fréchet Derivative)
Any functional S : C([a,b],Rn) → R is said to be twice Fréchet
differentiable at ϕ0 ∈ C([a,b],Rn) if there exists a bounded linear
operator ∇2

F S(ϕ0) : C([a,b],Rn) × C([a,b],Rn) → R uniformly for
ϕ1 ∈ C([a,b],Rn) on bounded sets of C([a,b],Rn) such that

lim
∥ϕ2∥→0+

1
∥ϕ2∥

(
|∇F S(ϕ0 + ϕ2)(ϕ1)−∇F S(ϕ0)(ϕ1)

−∇2
F S(ϕ0)(ϕ1, ϕ2)|

)
= 0.

The operator ∇2
F S(ϕ0) is called the second order Fréchet derivative

evaluated at ϕ0 ∈ C([a,b],Rn), or simply second order Fréchet deriva-
tive when it is clear from the context.
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Preliminaries
Illustrative Example: Fréchet Derivatives

Consider the following functional, defined for all ϕ ∈ C([a,b],Rn),

S(ϕ) = ∥ϕ∥2 =

∫ b

a
|ϕ(s)|2ds. (4)

The first and the second order Fréchet derivatives of (4) are
given for all φ ∈ C([a,b],Rn) and for all (φ1, φ2) ∈ C([a,b],Rn)×
C([a,b],Rn) by

∇F S(ϕ)(φ) =

∫ b

a
2φ⊤(s)ϕ(s)ds, (5)

∇2
F S(ϕ)(φ1, φ2) =

∫ b

a
2φ⊤

1 (s)φ2(s)ds. (6)
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Preliminaries
Riesz “Gradient" and “Hessian" Representation Theorems

Lemma (Riesz Representation Theorem)
Let ∇F S(ϕ0) be a bounded linear mapping defined as in Defi-
nition 1. Then, there exists a ∇RS(ϕ0) ∈ C([a,b],Rn) such that
the following holds, for every φ ∈ C([a,b],Rn),

∇F S(ϕ0)(φ) = ⟨∇RS(ϕ0), φ⟩.

Lemma (Riesz “Hessian” Representation Theorem)
Let ∇2

F S(ϕ0) be a bounded linear operator defined as in
Definition 2. Then, there exists a bounded linear operator
∇2

RS(ϕ0) : C([a,b],Rn) → C([a,b],Rn) such that for every
φ1, φ2 ∈ C([a,b],Rn) we have

∇2
F S(ϕ0)(φ1, φ2) = ⟨∇2

RS(ϕ0)(φ2), φ1⟩.
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Preliminaries
Illustrative Example: Riesz “Gradient" and “Hessian" Representation Theorems

The Fréchet derivatives of the functional

S(ϕ) = ∥ϕ∥2 =

∫ b

a
|ϕ(s)|2ds

were

∇F S(ϕ)(φ) =

∫ b

a
2φ⊤(s)ϕ(s)ds, (5)

∇2
F S(ϕ)(φ1, φ2) =

∫ b

a
2φ⊤

1 (s)φ2(s)ds. (6)

Here, invoking Riesz “Gradient" and “Hessian" Representation
Theorems for (5) and (6), we obtain the representations

∇RS(ϕ) = 2ϕ, ∀ϕ ∈ C([a,b],Rn),

∇2
RS(ϕ)(φ) = 2φ, ∀ϕ, φ ∈ C([a,b],Rn).
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Fréchet Discrete Operators
Fréchet Discrete Gradient and Hessian

The infinite-dimensional counterpart of the discrete gradient is understood as
a discrete vector representation of the Fréchet derivative ∇F S(ϕ) in C([a, b],Rn).

Definition (Fréchet Discrete Gradient)
Given a Fréchet differentiable functional S : C([a, b],Rn) → R and ∇RS(ϕ0) ∈
C([a, b],Rn), a Fréchet discrete gradient is a bounded linear operator ∇̄S
such that for all ϕ, φ ∈ C([a, b],Rn)

⟨ϕ− φ, ∇̄S(ϕ, φ)⟩ = S(ϕ)− S(φ),

lim
φ→ϕ

∇̄S(ϕ, φ) = ∇RS(ϕ).

Definition (Fréchet Discrete Hessian)
Given a twice Fréchet differentiable functional S : C([a, b],Rn) → R and
∇2

RS(ϕ0), a Fréchet discrete Hessian is a bounded linear ope-rator ∇̄2S
such that for all ϕ, φ, ψ ∈ C([a, b],Rn)

S(ψ)− S(φ) = ⟨ψ − φ, ∇̄S(ϕ, φ) + ∇̄2S(ϕ, φ, ψ)(ψ − φ)⟩,

lim
ψ→φ

∇̄2S(ϕ, φ, ψ) = ∇2
RS(ϕ)(φ).
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Fréchet Discrete Operators
Main Result: Fréchet Discrete Gradient 1

Proposition
Let S be a Fréchet differentiable functional. Suppose there exist
functionals V and W such that

i)
∫ b

a
V (ϕ(s), φ(s))ds = S(ϕ)− S(φ),

ii) ⟨ϕ− φ,W (ϕ, φ)⟩ = 0,

iii) lim
φ→ϕ

V (ϕ, φ)

∥ϕ− φ∥2 (ϕ− φ) = ∇RS(ϕ)− W (ϕ, ϕ).

Then, ∇̄S(ϕ, φ) = V (ϕ,φ)
∥ϕ−φ∥2 (ϕ−φ)+W (ϕ, φ) is a Fréchet discrete

gradient.
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Fréchet Discrete Operators
Main Result: Fréchet Discrete Hessian 1

Proposition
Let S be a twice Fréchet differentiable functional. Suppose there
exist skew-symmetric operators K1 and K2 such that

lim
ψ→φ

Σ(ϕ, φ, ψ) = ∇2
RS(ϕ)(φ)− K1(φ,φ),

Σ(ϕ, φ, ψ) :=
(
∇̄S(ψ,φ)− ∇̄S(ϕ, φ)

) (ψ − φ)⊤

∥ψ − φ∥2

+
(
∇̄S(ψ,φ)− ∇̄S(ϕ, φ)

)
(ψ − φ)⊤K2(ϕ, φ, ψ).

Then, ∇̄2S(ϕ, φ, ψ) = K1(φ,ψ)+Σ(ϕ, φ, ψ) is a Fréchet discrete
Hessian.
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Fréchet Discrete Operators
Main Result: Fréchet Discrete Gradient 2 (For the Functionals in Integral Form)

Proposition
Let S be a Fréchet differentiable functional defined as

S(ϕ) =

∫ b

a
σ(ϕ(s)) ds,

where σ : Rn → R. The bounded linear operator

∇̄S := (∇d1 S, · · · ,∇dn S)⊤,

where ∇di S(ϕ, ψ) is defined as

∇d1 S(ϕ, ψ) =
σ(ϕ1, ψ2, · · · , ψn)− σ(ψ1, · · · , ψn)

ϕ1 − ψ1
,

∇dn S(ϕ, ψ) =
σ(ϕ1, · · · , ϕn)− σ(ϕ1, · · · , ϕn−1, ψn)

ϕn − ψn
,

∇di S(ϕ, ψ) =
σ(ϕ1, · · · , ϕi , ψi+1, · · · , ψn)− σ(ϕ1, · · · , ϕi−1, ψi , · · · , ψn)

ϕi − ψi
,

is a Fréchet discrete gradient.
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Fréchet Discrete Operators
Main Result: Fréchet Discrete Gradient 3

Proposition
Let S be a Fréchet differentiable functional. Assume that for any
ϕ, φ ∈ C([a,b],Rn) and all ξ ∈ (0,1), the convex combination
ξϕ + (1 − ξ)φ is contained in C([a,b],Rn). Then, the bounded
linear operator

∇̄S(ϕ, φ) =


∫ 1

0 [∇RS(ξϕ+ (1 − ξ)φ)]1 dξ
...∫ 1

0 [∇RS(ξϕ+ (1 − ξ)φ)]n dξ

 ,
is a Fréchet discrete gradient.
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Fréchet Discrete Operators
Illustrative Example: Fréchet Discrete Gradient

Consider the functional

S(ϕ) =

∫ b

a
(ϕ1(s)− f1(s))4 + (ϕ2(s)− f2(s))2 ds,

where f1, f2 ∈ C([a,b],R). The Fréchet derivative is

∇RS(ϕ) =

[
4(ϕ1 − f1)3

2(ϕ2 − f2)

]
.

The Fréchet discrete gradient is given by

∇̄S(ϕ, φ) =

[(
(ϕ1 − f1)

2 + (φ1 − f1)
2
)
(ϕ1 + φ1 − 2f1)

(ϕ2 + φ2 − 2f2)

]
.
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Infinite Dimensional Optimization
Infinite Dimensional Optimization Problem and Fréchet Discrete Gradient Method

Consider the unconstrained optimization problem

min
ϕ∈C([a,b],Rn)

S(ϕ),

where S : C([a,b],Rn) → R is the objective functional.

Given an objective functional S and an initial guess ϕ0 ∈ C([a,b],Rn),
the Fréchet discrete gradient method is

ϕk+1 = ϕk − τk∇̄S(ϕk+1, ϕk ),

where τk > 0 is a k -varying time step.
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Infinite Dimensional Optimization
Definitions: Lower Semi-Continuity, Coercivity, Convexity/Strict Convexity

Definition
Let X be a Banach space. A functional S : X → R is lower semi-continuous
at ϕ ∈ X if

S(ϕ) ≤ lim inf
k→∞

S(ϕ)

for all sequences {ϕk}k∈N ∈ X such that ϕk → ϕ.

Definition
A functional S : X → R is coercive if lim∥ϕ∥→∞ S(ϕ) = ∞.

Definition
Let X be a non empty convex subset of C([a, b],Rn). A functional S :
C([a, b],Rn) → R is convex if for all α ∈ [0, 1] and for all ϕ, φ ∈ X

S(αϕ+ (1 − α)φ) ≤ αS(ϕ) + (1 − α)S(φ).

The functional S is strictly convex if the above inequality holds tight for all
ϕ ̸= φ and α ∈ (0, 1).
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Infinite Dimensional Optimization
Main Result: Conditions for Convergence 1

Theorem
Let X be a non-empty, convex, strongly closed, and bounded
subset of C([a,b],Rn). Suppose S is convex, lower semi-
continuous, and Fréchet differentiable on every bounded subset
of X . Then any sequence {ϕk} generated by the Fréchet dis-
crete gradient method is a (locally) minimizing sequence for S

S(ϕk ) → inf
X

S(ϕ).

Moreover, for all ϕk+1 ̸= ϕk

S(αϕk+1 + (1 − α)ϕk ) ≤ S(ϕk ).
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Infinite Dimensional Optimization
Main Result: Conditions for Convergence 2

Corollary
Suppose S is strictly convex, lower semi-continuous, and
Fréchet differentiable on every bounded subset of X . Then
any sequence {ϕk} generated by the Fréchet discrete gradient
method converges to the singleton set infX S(ϕ). Moreover, for
all ϕk+1 ̸= ϕk

S(αϕk+1 + (1 − α)ϕk ) < S(ϕk ).
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Infinite Dimensional Optimization
Illustrative Example

Consider the least-squares problem for an integral operator

min
ϕ∈C([a,b],R2)

S(ϕ) =

∫ b

a

2∑
i=1

(ϕi(s)− fi(s))2 ds,

where f1, f2 ∈ C([a,b],R).

The Fréchet derivative for all φ1, φ2 ∈ C([a,b],R) is

∇F S(ϕ)(φ) =

∫ b

a

2∑
i=1

2(ϕi(s)− fi(s))φi(s)ds.

The representation of the Fréchet derivative is

∇RS(ϕ) = 2(ϕ− f ),

where

f =
[
f1
f2

]
, ϕ =

[
ϕ1
ϕ2

]
.
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Infinite Dimensional Optimization
Illustrative Example

The Fréchet discrete gradient method for the integral operator
yields

ϕk+1 = ϕk − 2τk

1 + τk
(ϕk − f ).

Consider a = −1, b = 1, and for all x ∈ [−1,1]

f =
[
sin(x)
cos(x)

]
, ϕ0 =

[
cos(4x)

4
3 + log( 3

√
x + 1.2)

]
.
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Infinite Dimensional Optimization
Illustrative Example: Error Analysis

Figure: Contour of the error norm ∥ϕk − f∥ for all iterations k ∈ [0,50]
and learning rates τ ∈ [10−2,102].
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Infinite Dimensional Optimization
Illustrative Example: The Sequence {ϕk}

Figure: Shape of the sequence {ϕk} for all iterations k ∈ [0,200] and
learning rate τ = 10−2.
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Conclusion
▶ The Fréchet discrete gradient method extends discrete gradient

methods to infinite-dimensional spaces, providing effective tools
for optimization with convergence guarantees.

▶ This study presents a novel approach to leverage the represen-
tation of Fréchet derivatives on Banach spaces by introducing
Fréchet discrete operators to infinite-dimensional spaces.

▶ The main contributions include:
▶ Fréchet Discrete Gradient: An extension of the discrete

gradient concept by González et al. (1996) for finite-dimensional
spaces.

▶ Fréchet Discrete Hessian: An enhancement of the second-
order representation of the Fréchet derivative.

▶ We provide the first insight into discrete gradient methods for con-
vex optimization on infinite-dimensional spaces.

▶ Under mild conditions, any sequence generated by the discrete
gradient method built on Fréchet discrete gradient operators achieves
convergence for all finite learning rates.
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Future Work

Further exploration and application of Fréchet discrete operators
can lead to significant advancements in:
▶ Optimization theory
▶ Functional learning
▶ Optimal control problems and team theory (Zoppoli et al.,

2020, Ch. 9)
▶ Data-driven model reduction, see Moreschini et al. (2023a,c),

Simard et al. (2023), Moreschini et al. (2024)
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THANK YOU!
QUESTIONS?
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