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Vector Spaces and Matrices

We define a column n-vector to be an array of n numbers, denoted

L Qp

The number a; is called the ith component of the vector a. Denote by R the set of

real numbers, and by R™ the set of column n-vectors with real components. We call

R" an n-dimensional real vector space. We commonly denote elements of R" by

lower-case bold letters, e.g., . The components of x € R™ are denoted z1, ..., Z,.
We define a row n-vector as

[al:aaQr .. :a'n]-
The transpose of a given column vector a is a row vector with corresponding elements,
denoted a”. Equivalently, we may write @ = la1,a9,...,a,]T.

In this course, the term vector (without the qualifier row or column) will be refer
to “column vector”.



A set of vectors {aq,...,a;} is said to be linearly independent if the equality
a1y + agaz + -+ opar =0

implies that all coefficients o, i = 1,..., k, are equal to zero. A set of the vectors
{ay,...,a} is linearly dependent if it is not linearly independent.

\/

*%*  What about the set of composed of the single vector 0 ?

Note that the set composed of the single vector 0 is linearly dependent, for if
a # 0 then a0 = 0. In fact, any set of vectors containing the vector 0 is linearly
dependent.

\/

% What about a set composed of the single nonzero vector?

A set composed of a single nonzero vector @ # 0 is linearly independent since
aa = 0 implies a = 0.

A vector a 1s said to be a linear combination of vectors ai, as, ..., a if there are
scalars o, ..., ag such that

a=oa +oaa2 + -+ apQy.



Proposition 2.1 A set of vectors {a,,as,...,a} is linearly dependent if and only
if one of the vectors from the set is a linear combination of the remaining vectors.

Proof. =: If {a;,as,...,a;} is linearly dependent then

a1a; + asasz + -+ aray =0,

where at least one of the scalars a; 7 0, whence

1 X9 447
@ =——Q;— —@Qz— - — —a
; (8.4 4.7
<: Suppose
a; = asay + azasg + - + orayg,
then
(-1)a; + azaz + -+ - + azar = 0.
Because the first scalar is nonzero, the set of vectors {ay,as,...,a;} is linearly
dependent. The same argument holds if a;, 2 = 2,...,k, is a linear combination of

the remaining vectors. B



A subset V of R” is called a subspace of R® if V is closed under the operations
of vector addition and scalar multiplication. That is, if @ and b are vectors in V, then
the vectors a + b and aa are also in V for every scalar a.

Every subspace contains the zero vector 0, for if a is an element of the subspace,

sois (—1)a = —a. Hence, a — @ = 0 also belongs to the subspace.
Letai,aq,...,a; be arbitrary vectors in R™. The set of all their linear combina-
tions is called the span of a1, a2, ..., a; and is denoted

k
spanl[a;,as,...,ar] = Za,;ai DO, ..., ERY L
t=1

Given a vector a, the subspace span[a] is composed of the vectors aa, where a is
an arbitrary real number (o € ). Also observe that if a is a linear combination of
ai,as,...,a; then

span[a,as,...,ak,a] = spanf[ai,as, ..., a.

The span of any set of vectors is a subspace.



Given a subspace V, any set of linearly independent vectors {a;, as,...,ar} CV
such that V = span[a,, as, ..., ax] is referred to as a basis of the subspace V. All
bases of a subspace V contain the same number of vectors. This number is called the
dimension of V, denoted dim V.

Proposition 2.2 If {a,,a,...,a.} is a basis of V, then any vector a of V can be
represented uniquely as

a=qua +aay + -+ apag,

wherea; e R 1 =1,2,...,k.



Proof. To prove the uniqueness of the representation of @ in terms of the basis

vectors, assume that
a = a; +aaz + -+ apag

and
a = pa; + Bras + -+ Prag.

We now show thata; = 8,2 = 1,...,k. We have
a1a; + aza3 + - + agag = fray + feas + -+ - + Prag,

or
(a1 — Br)a; + (a2 — B2)as + -+ - + (ar — Br)ax = 0.

Because theset {a; : 1 = 1,2,...,k} is linearly independent,a; — /1, = ap — 33 =
-~=ak-—,6'k==0,thatiS,a-i==ﬂe',?:=1,--.,k- i



Suppose we are given a basis {@1,as,...,ax} of V and a vector a € V such that
a=oa; + oo + -+ Qpag.

The coefficients o;, 2 = 1,.. ., k, are called the coordinates of a with respect to the
basis {a1,as,...,ax}. |

The natural basis for R"™ is the set of vectors

(17 R'a L3
0 1 0
0 0 0
€1=1-.1> €2 = vy eees En = |
0 0 0
0 |0 1

The reason for calling these vectors the natural basis is that

T

i)
T = . =Tjey +Tze2 + -+ Tpén,.

L Zp,



Rank of a matrix
A matrix 1s a rectangular array of numbers, commonly denoted by upper-case bold
letters, e.g., A. A matrix with m rows and n columns is called an m x n matrix, and
we write

@11 Q2 - Qip |
Qo1 Q22 . aQm?2
A=
L am1 Q2 : Amn _

Let us denote the kth column of A by ay, that is,

ap —

L Amk -

The maximal number of linearly independent columns of A is called the rank of the
matrix A, denoted rank A. Note that rank A is the dimension of spanfa,, ..., a,].



A pth-order minor of an m x n matrix A, with p < min(m, n), is the determinant
of a p X p matrix obtained from A by deleting m — p rows and n — p columns.

If a matrix A has an rth-order minor | M | with the properties (i) | M| # 0 and (ii)
any minor of A that is formed by adding a row and a column of A to M is zero, then

rank A = r.

Thus, the rank of a matrix is equal to the highest order of its nonzero minor(s).

A nonsingular (or invertible) matrix is a square matrix whose determinant is
nonzero.

Suppose that A is an n X n square matrix. Then, A is nonsingular if and only if
there 1s another n X n matrix B such that

AB=BA=1,,



where I, denotes the n X n identity matrix:

"]_ O O-
01 --- 0
In=1. . . .
0 0 --- 1]

We call the above matrix B the inverse matrix of A, and write B = AL
Consider the m X n matrix

Cd11 412 Aln |
a1 a22 a2n,
A= :
L Q1 am?2 Tt Amn -

The transpose of A, denoted AT, is the n X m matrix

that is, the columns of A are the rows of AT, and vice versa. A matrix A is symmetric

if A=A7T.

ail a2 Am1l
ai12 a2 Am?2
AT = .
LA1n Q2 Amn 4



Inner Products and Norms

The absolute value of a real number a, denoted |a|, is defined as

laf = a ifa>0
"] ~-a ifa<0’

The following formulas hold:

L. o] = | - af

2. —|a| <a<|al;

3. la+b| < |a| + |b];

4. [lal = [b]] < la —b] < |a| + [8];

5. |ab| = |af|b|;

6. |a| < cand |b| < dimply la + b < ¢+ d;

7. The inequality |a| < b is equivalentto —b < @ < b (i.e.,a < band —a < b).

The same holds if we replace every occurrence of “<” by “<.”

8. The inequality ja| > bis equivalentto a > b or —a > b. The same holds if we
replace every occurrence of “> by “>”



For xz,y € R™, we define the Euclidean inner product by

n
T
(z,y) = Zmz‘yi =T Y.
i=1
The inner product is a real-valued function (-, -) : R” x R®* — R having the following
properties:
1. Positivity: {(x,z) > 0, {x,z) = 0if and only if z = 0;
2. Symmetry: {(z,y) = (Y, z);
3. Additivity: {(x +y, 2) = {z, 2) + (y, 2);
4. Homogeneity: (rx,y) = r{x,y) foreveryr € R.

The properties of additivity and homogeneity in the second vector also hold, that
is, |

1

(z,y + 2) (z,y) + (2, 2),
(z,ry) = r(x,y) foreveryr e R.



The vectors = and ¥ are said to be m:thogonal if {x,y) = 0.

The Euclidean norm of a vector x is defined as

lzll = V{z, ) = Vel

The Euclidean norm of a vector ||z|| has the following properties:
1. Positivity: |||l > 0, |||| = 0 if and only if z = 0;
2. Homogeneity: ||rz|| = |r|||z||,r € R;

3. Triangle Inequality: ||z + y|| < l|z|| + ||yl

The Euclidean norm is an example of a general vector norm, which is any func-
tion satisfying the above three properties of positivity, homogeneity, and triangle
inequality. Other examples of vector norms on R” include the 1-norm, defined by
llz|ls = |z1| + -+ + |xn|, and the co-norm, defined by ||x||cc = max;|z;|. The
Euclidean norm is often referred to as the 2-norm, and denoted ||z||s. The above
norms are special cases of the p-norm, given by

”:B” _ (|$1|p+"'+|$n|p)1/p if 1l <p<oo
P max(|z1],.- -, |Tal) if p= o0



Eigenvalues and Eigenvectors

Let A be an n X n square matrix. A scalar A (possibly complex) and a nonzero
vector v satisfying the equation Av = Av are said to be, respectively, an eigenvalue
and eigenvector of A. For A to be an eigenvalue it is necessary and sufficient for the
matrix Al — A to be singular, that is, det[AI — A] = 0, where I is the n x n identity
matrix. This leads to an nth-order polynomial equation

det[AI — A] = A"+ an__lz\“_l + -+ alA + ag = 0.

We call the polynomial det{AI — A] the characteristic polynomial of the matrix A,
and the above equation the characteristic equation. According to the fundamental
theorem of algebra, the characteristic equation must have n (possibly nondistinct)
roots that are the eigenvalues of A.



Concepts from Geometry

Line segments

The line segment between two points  and y in R" is the set of points on the
straight line joining points T and y (see Figure 4.1). Note that if z lies on the line
segment between  and y, then

z—-y=a(x-y),

where a is a real number from the interval [0, 1]. The above equation can be rewritten
as z = ax + (1 — a)y. Hence, the line segment between x and ¥ can be represented
as

{fax+(1—-a)y :a€]0,1]}.

Z

Z=0X+(1-o)y
X oe[0,1]

Figure 4.1 A line segment



Hyperplanes

Let uy,us,...,u,, v € R, where at least one of the u; is nonzero. The set of all
points © = [r1, T3,...,T,]? that satisfy the linear equation

UITy + U2y + -+ UpTy =V
is called a hyperplane of the space R™. We may describe the hyperplane by

{z e R" :ulz =),

where
u = [ul,UQ, cen ,’u..n]T.

A hyperplane is not necessarily a subspace of R” since, in general, it does not contain
the origin. For n = 2, the equation of the hyperplane has the form u 1 + w22 = v,
which is the equation of a straight line. Thus, straight lines are hyperplanes in R?.
In R3 (three-dimensional space), hyperplanes are ordinary planes. By translating a
hyperplane so that it contains the origin of R*, it becomes a subspace of R" (see
Figure 4.2). Because the dimension of this subspace is n — 1, we say that the

hyperplane has dimensionn — 1.



Figure 4.2 Translation of a hyperplane

The hyperplane H = {x : ujzy + -+ + u,x, = v} divides R" into two half-
spaces. One of these half-spaces consists of the points satisfying the inequality
U121 + U + - - + U, T, > v, denoted

Hy ={zecR" :uTz > v},



where, as before,
T
u=[u1,u2,...,u-n] -

The other half-space consists of the points satisfying the inequality u;z; + ugz2 +
-+ unTy, < v, denoted

H_ ={zeR":u'z <v}.

The half-space H is called the positive half-space, and the half-space H_ is called
the negative half-space.

Let a = [a;,a2,...,a,)! be an arbitrary point of the hyperplane H. Thus,

ula — v = 0. We can write
ule—v = ulz—v—(ula-"0)
= ul(z-a)

ur(z1 — a1) +ua(z2 — a2) + - + up(Tn —an) =



The numbers (x; — a;), ¢+ = 1,...,n, are the components of the vector T — a.
Therefore, the hyperplane H consists of the points & for which (u,x — a) = 0.
In other words, the hyperplane H consists of the points & for which the vectors u
and & — a are orthogonal (see Figure 4.3). We call the vector u the normal to the
hyperplane H. The set H,. consists of those points x for which (u,x —a) > 0, and
H_ consists of those points & for which (u,x — a) < 0.

<u,x-a>=0

Figure 4.3 The hyperplane H = {z € R" : u" (¢ — a) = 0}



Convex Sets

Recall that the line segment between two points u,v € R" is the set {w € R” :
w=ou+ (1 -a)v,a € [0,1]}. Apointw = au + (1 — &)v (where & € [0, 1])
is called a convex combination of the points u and v.

A set © C R” is convex if for all u, v € O, the line segment between u and v is
in ©. Figure 4.4 gives examples of convex sets, whereas Figure 4.5 gives examples
of sets that are not convex. Note that © is convex if and only if au + (1 — a)v € ©

forallu,v € ®and o € (0,1).

®

Figure 4.4 Convex sets Figure 4.5 Sets that are not convex




Examples of convex sets include:
e the empty set
¢ a set consisting of a single point
e aline or a line segment
e a subspace

¢ a hyperplane

e a half-space

e R”,

A point z in a convex set © is said to be an extreme point of O if there are no two
distinct points « and v in © such that z = au + (1 — a)v for some « € (0, 1). For
example, in Figure 4.4, any point on the boundary of the disk is an extreme point,
the vertex (corner) of the set on the right is an extreme point, and the endpoint of the
half-line is also an extreme point.



Neighborhoods
A neighborhood of a point * € R" is the set
Ay eR":ly -zl <&},

where ¢ is some positive number. The neighborhood is also called the ball with
radius ¢ and center .

In the plane R?, a neighborhood of z = [z, $2]T consists of all the points inside
of a disc centered at . In R?, a neighborhood of £ = [z, 22, z3]T consists of all
the points inside of a sphere centered at  (see Figure 4.7).

disc sphere

Figure 4.7 Examples of neighborhoods of a point in R? and R®



A point x € S is said to be an interior point of the set S if the set S contains some
neighborhood of x, that is, if all points within some neighborhood of x are also in S
(see Figure 4.8). The set of all the interior points of S is called the interior of S.

Figure 4.8 «x is an interior point, while ¥ is a boundary point

A point x is said to be a boundary point of the set S if every neighborhood of
& contains a point in S and a point not in S (see Figure 4.8). Note that a boundary
point of S may or may not be an element of S. The set of all boundary points of S is
called the boundary of S.



A set S is said to be open if it contains a neighborhood of each of its points, that

s, if each of its points is an interior point, or equivalently, if S contains no boundary
points.

A Xo Sq= {[X1,X2]T:1<X1 <2,1<x9 <2}
3T S, is open
24 - So={[x1,X2]":3<x1<4,15x5 <2}
v Sy | S S, is closed
1+
0 : .' : : —y

0 1 2 3 4 5
Figure 4.9 Open and closed sets

A set S is said to be closed if it contains its boundary (see Figure 4.9). We can
show that a set is closed if and only if its complement is open.

A set that is contained in a ball of finite radius is said to be bounded.

A set Is compact If it is both closed and bounded.

Reference: Chong, E. K., & Zak, S. H. (2013). An introduction to optimization (Vol.
76). John Wiley & Sons, Chapter 1, Chapter 2, Chapter 4.




