Optimization Techniques
Lecture 2
Hale Gonce Kocken

Gradient, Hessian, Convexity of
functions, Definiteness



Gradient

 When fis real-valued (i.e.f:R">R) the derivative Df(x) is a 1xn
matrix, i.e. it is a row vector. Its transpose is called the gradient
of the function:
Vf(x) = Df(x)"
* whichis a column vector, i.e. in R". Its components are the
partial derivatives of f:

Vf(x); = ag)(:c),i =1,2,..,n
@ af @ af@]
Vi) = 0x; 0x, ~ 0x,

The direction of V/f is the orientation in which the directional
derivative has the largest value and |V f] is the value of that
directional derivative.



Hessian Matrix -Second Derivative

Given f : R* — R, if V[ is differentiable, we say that f is twice differentiable,
and we write the derivative of V f as

Ori Ox2011 Oz, 8z

sz _ 9z101x9 zs 0%, 0z2
oty oy .. &y

| 82102, Oz20%Tn ozs

The matrix D? f () is called the Hessian matrix of f at x, and is often also denoted
F(z).



Find the Hessian Matrix of the function f(z,y) = z°y + xy°.
We need to first find the first partial derivatives of f. We have that:

of _ 3 of _ 5 )

E—Exy—l—y B ik + 3zy
We then calculate the second partial derivatives of f:

aﬂf E f 32'}; 32 f
— =2y 2z + 3y° =2z +3y° , —=
ik v e Al I v y 2

Therefore the Hessian Matrix of f IS

?{(m* y) -

2y 2z + 3y*
2z + 3y° by

Example 6.1 Let f(z,,2;) = 5z) + 823 + x122 — 27 — 223.
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Theorem 21.2 A function f : ) — R defined on a convex set {8 C R" is convex if
and only if forall x,y € Q and all a € (0, 1), we have

flaz + (1 - a)y) < af(x) + (1 - a)f(y).
A

f(y)

The line segment between any two points

on the graph lies on or above the graph
flox+(1-01)y) 4

Y

Figure 21.5 Geometric interpretation of Theorem 21.2

Definition 21.4 A function f : @ — R on a convex set 2 C R"” is strictly convex if
forallz,y € Q, x # y,and & € (0,1), we have

flox + (1 - a)y) < af(z)+(1-a)f(y).



Definition 21.5 A function f : ! — R on a convex set {1 C R is (strictly) concave
if — f is (strictly) convex. |

Definition 21.1 The graphof f : (} — R, @ C R", is the set of points in {2 x R C
R**! given by

{lz, f(@))" :z € O},
Definition 21.2 The epigraph of a function f : @ — R, © C R™, denoted epi(f), is
the set of points in 2 x R given by

epi(f) = {[z, 8] :x € Q, 8RB > f(z)}.

The epigraph epi(f) of a function f is simply the set of points in {2 x R on or

above the graph of f (see Figure 21.4). We can also think of epi(f) as a subset of
R+,
10 p

graph of f

Figure 21.4 The graph and epigraph of a function f : R » R



The hypograph of a function f:Q — R, denoted hyp(f), is the set of points in Q x R
given by

hyp(f) = {[x,f]": xeQ,BeR,B < f(x)}

Theorem (Characterization the convexity of a function in terms of graphs)

(a) A function f defined on a convex set is concave if and only if its hypograpf hyp f
IS convex.

(b) A function f defined on a convex set S is convex if and only if its epigraph epi f is
convex.

Theorem 214 Let f : Q = R f € C?, be defined on an open convex set 1 C R™.

Then, f is convex on Q if and only if for each = € §}, the Hessian F(x) of f at x is
a positive semidefinite matrix. O



DEFINITENESS of a MATRIX

e A matrix HeR™ (H isareal symmetric nxn matrix) is said to be positive
definite if forall h=0, h"Hh>0.

* The First Method (Definition)

YheR" h#0

) h'Hh>0 = H is positive semidefinite
h'Hh>0 = His positive definite

i) h'Hh<0 = H is negative semidefinite
h'H h <0 = H is negative definite

1) Otherwise, H is indefinite matrix



The Second Method (Eigenvalues)

e Let the eigenvalues of Hbe A, 4,,..., 4.

1) Ifall 4 >0 ; 1=1,2,...,n, then H is positive semidefinite
If all >0 ; 1=1,2,...,n, then H is positive definite

1) Ifall 4 <0 , 1=1,2,...,n, then H Is negative semidefinite
If all A.<0 ;1=1,2,...,n, then H is negative definite

1) Otherwise, H is indefinite matrix
The Third Method (Principal Leading Minors)**

A minor of the matrix A of order k is principal if it is obtained by deleting n—k
rows and the n—k columns with the same numbers.

Note that the definition does not specify which n—k rows and columns to delete,
only that their indices must be the same.

The leading principal minor of A of order k is the minor of order k obtained by
deleting the last n—k rows and the last n—k columns.



Example 3 For a general 3 x 3 matri,

@31 A2 51-13-‘
..4. — J

() Qg2 23
(131 (32 33

All principal minors:

There is one third order principal minor, namely |A|

There are three second order principal minors:

11 12

formed by deleting column 3 and row 3:
(a1 a9 .

11 13 : . |
formed by deleting column 2 and row 2:

31 U3z

(9o
227 formed by deleting column 1 and row 1

(a2 a3
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And there are three first order principal minors:

ayy| . formed by deleting the last two rows and columns

(oo | . formed by deleting the first and third rows and columns

asz| . formed by deleting the first two rows and columns

The Leading principal minors:

The first order principal minor:
The second order principal minor:
The third order principal minor:

The algorithm for testing the definiteness of a symmetric matrix:

Let A be a symmetric N XN matrix, denote

its leading principal minors by A; for i €{1,2,...,n} and

its principal minors by D, for each order i €{1,2,...,n}.

n :
Remark: The matrix A has [j principal minors of order I.
|
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The algorithm for testing the definiteness of a symmetric matrix:

1. A is positive definite if and only if all its N leading principal minors are
positive, thatis A; >0 forall ie{12,...,n}.

2. A is negative definite if and only if its N leading principal minors
alternate in sign beginning by negative: A, <0,A,>0,A,<0,A, >0,...
3. A is positive semidefinite if and only if all its principal minors are

nonnegative, thatis all D; 20 for all i €{1,2,...,n} considering all

principal minors.
4. A is negative semidefinite if and only if every principal minors of odd

order is nonpositive (<0) and every principal minors of even order is
nonnegative (2 0), that is (—1)i D >0 forall e {1,2,...,n} considering all

principal minors.
5. Otherwise A is indefinite.



Note:

In the first two cases, it is enough to check the inequality for all the
leading principal minors.

If some 1 —th order leading principal minor of A is nonzero but does not
fit either of the sign patterns in case 1 and case 2, then A is indefinite.
When some leading principal minor of A is zero, but the others fit one of
the patterns in case 1 and case 2: the matrix is not definite, but may or
may not be semidefinite. In this case, we must unfortunately check not
only the principle leading minors, but every principal minor (cases 3 and
4: we must check all principles minors that is for each 1 with 1<i<n

n .
and for each of the (j principal minors of order 1.)
|



Example: Determine the definiteness of the following matrix with three

methods 7 1
i



Example: Determine the definiteness of the following matrices

3 0 0 I
6 4 1 1 1
= ,B={0 -2 0|,c=|1 1

4o 0 0 -1 11}/

We have that Dy = 6 > 0, and ), = =30-16=14> 0.

5

Therefore, A is a positive definite matrix.

We havethat Dy = —3 < 0and D> = } _IJS {12‘ = 6 > 0. The matrix A is known as a diagonal matrix,
-3 0 0

and the determinant D3z = | () -2 0
0 0 =1

can be computed as the product of the entries in the main diagonal, thatis D3 = (—3)(-2)(—-1) = -6 < 0

Since Dy, Dy < 0 and D, > 0, we have that A is a negative definite matrix.
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Theorem 21.4 Let f : Q = R f € C?, be defined on an open convex set (! C R™.
Then, f is convex on Q if and only if for each = € §}, the Hessian F(x) of f at x is
a positive semidefinite matrix. O

Note that by definition of concavity, a function f : @ — R, f € C?, is concave
over the convex set 2 C R™ if and only if for all € (), the Hessian F'(x) of f is
negative semidefinite.

positive semidefinite — convex
positive definite —strictly convex
negative semidefinite —concave
negative definite —strictly concave




Some exercises on convexity of sets and functions

1. By drawing diagrams, determine which of the following sets is convex.
a. {(x, y): y = e}.
b. {(x, v): v = &*}.
c.{(x,v):xy=21, x>0,y >0}

a. Not convex, because e®**(1=8)U &+ geX 4 (1-8)eY, as illustrated in the following figure.

fixy=¢’
| I
Pe’+ (1 -0)e'eaaanns .
ay + 01 - H].’_

gl

5 Bs + (1-0w 1 X
b. Convex, because 8 +(1=8U « geX 4 (1-B)e? (see the following figure).

{(x,yxyz2 LLx>0,y>0]}

{(x,y)ry2e']

X

I

c. Convex, because if xy = 1 and uv = 1 then (Bx + (1-8)u)(By + (1-6)v) = 1 (see figure).



2. For each of the following functions, determine which, if any, of the following conditions the function

satisfies: concavity, strict concavity, convexity, strict convexity. (Use whatever technique is most
appropriate for each case.)

a. f(x,y)=x+y.

b. f(x, y¥) = x2. [Note: f is a function of two variables.]
c. f(x, y)—x+y e’ — 7Y,

d. f(x, y,z) = x>+ y?> + 322 — xy + 2xz + yz.
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3. Letf(xy, x;) = x‘:‘ — XX, + X

+ 3x, — 2x, + 1. Is f convex, concave, or neither?
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4. Let f(xy, x5) = x‘i’ + zxi + 2x,x, + (1;’2):«'; — 8x, — 2x, — 8. Find the range of values of (x,, x,) for
which f is convex, if any.

5 Determine the values of a (if any) for which the function 2x% + 2xz + 2ayz + 272 is concave and the
— values for which it is convex.
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6. Show that the function —w? + 2wx — x? — y? + 4yz — z? (in the four variables w, x, v, and z) is not

concave.
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