Optimization Techniques Lecture 3 Hale Gonce Köçken

Unconstrained Optimization, Local and Global Minimizer, Feasible Direction, FONC and SOSC for a local minimizer

Unconstrained Optimization,

 $\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in \Omega. \end{array}$

The function $f : \mathbb{R}^n \to \mathbb{R}$ that we wish to minimize is a real-valued function, and is called the *objective function*, or *cost function*. The vector x is an *n*-vector of independent variables, that is, $x = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$. The variables x_1, \dots, x_n are often referred to as *decision variables*. The set Ω is a subset of \mathbb{R}^n , called the *constraint set* or *feasible set*.

The above problem is a general form of a *constrained* optimization problem, because the decision variables are constrained to be in the constraint set Ω . If $\Omega = \mathbb{R}^n$, then we refer to the problem as an *unconstrained* optimization problem.

The constraint " $x \in \Omega$ " is called a *set constraint*. Often, the constraint set Ω takes the form $\Omega = \{x : h(x) = 0, g(x) \leq 0\}$, where h and g are given functions. We refer to such constraints as *functional constraints*. The remainder of this chapter deals with general set constraints, including the special case where $\Omega = \mathbb{R}^n$. The case where $\Omega = \mathbb{R}^n$ is called the *unconstrained* case.

minimize	f(x)
subject to	$x \in \Omega$.

minimizer of f over Ω maximizing f is equivalent to minimizing -f

Max versus min: Maximizing a function g is equivalent to minimizing -g, so there's no loss of generality in concentrating on minimization. This is the convention in much of optimization theory

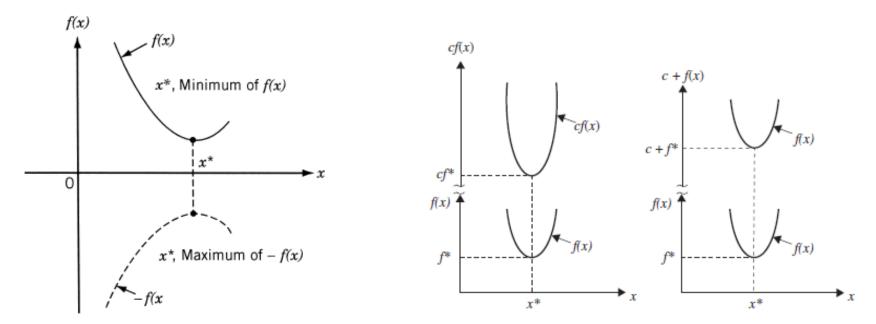


Figure 1.1 Minimum of f(x) is same as maximum of -f(x).

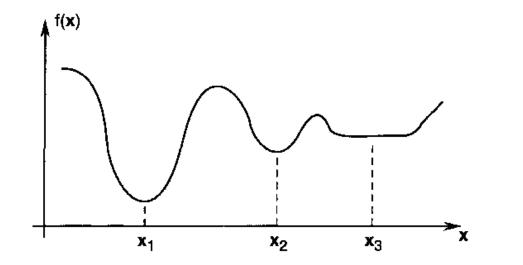
Figure 1.2 Optimum solution of cf(x) or c + f(x) same as that of f(x).

Local and Global Minimizers

Definition 6.1 Local minimizer. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a real-valued function defined on some set $\Omega \subset \mathbb{R}^n$. A point $x^* \in \Omega$ is a local minimizer of f over Ω if there exists $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$ and $||x - x^*|| < \varepsilon$.

Global minimizer. A point $x^* \in \Omega$ is a global minimizer of f over Ω if $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$.

If, in the above definitions, we replace " \geq " with ">", then we have a *strict local* minimizer and a *strict global minimizer*, respectively.



 x_1 : strict global minimizer;

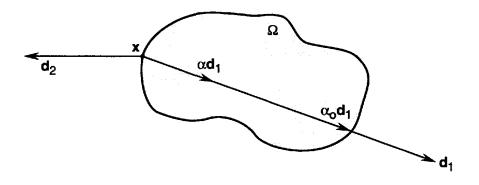
 x_2 : strict local minimizer;

 x_3 : local (not strict) minimizer

Feasible Direction

Given an optimization problem with constraint set Ω , a minimizer may lie either in the interior or on the boundary of Ω . To study the case where it lies on the boundary, we need the notion of *feasible directions*.

Definition 6.2 Feasible direction. A vector $d \in \mathbb{R}^n$, $d \neq 0$, is a feasible direction at $x \in \Omega$ if there exists $\alpha_0 > 0$ such that $x + \alpha d \in \Omega$ for all $\alpha \in [0, \alpha_0]$.



 d_1 is a feasible direction,

 d_2 is not a feasible direction

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a real-valued function and let d be a feasible direction at $x \in \Omega$. The directional derivative of f in the direction d, denoted $\partial f/\partial d$, is the real-valued function defined by

$$\frac{\partial f}{\partial \boldsymbol{d}}(\boldsymbol{x}) = \lim_{\alpha \to 0} \frac{f(\boldsymbol{x} + \alpha \boldsymbol{d}) - f(\boldsymbol{x})}{\alpha}$$

If ||d|| = 1, then $\partial f/\partial d$ is the rate of increase of f at x in the direction d. To compute the above directional derivative, suppose that x and d are given. Then, $f(x + \alpha d)$ is a function of α , and

$$f(x + \propto d) = F(\propto)$$

$$F'(\alpha) = \frac{\delta f}{\delta x_1} \frac{dx_1}{d \alpha} + \frac{\delta f}{\delta x_2} \frac{dx_2}{d \alpha} + \dots + \frac{\delta f}{\delta x_n} \frac{dx_n}{d \alpha}$$
$$= \nabla f(x)^T \cdot d$$

In summary, if d is a unit vector, that is, ||d|| = 1, then $\langle \nabla f(x), d \rangle$ is the rate of increase of f at the point x in the direction d.

Theorem First-Order Necessary Condition (FONC). Let Ω be a subset of \mathbb{R}^n and $f \in C^1$ a real-valued function on Ω . If x^* is a local minimizer of f over Ω , and x^* is an interior point of Ω , then

$$\nabla f(\boldsymbol{x}^*) = \boldsymbol{0}.$$

What happens if Ω is an open subset of \mathbb{R}^n ?

FONC: Let Ω be an open set and f is a continuously differentiable function over Ω ($f \in C^1$). If $x * \in \Omega$ is a minimizer of f, then $\nabla f(x^*) = 0$. $\nabla f(x^*)=0.$

This is the **first-order necessary condition for optimality**. The condition is ``first-

order" because it is derived using the first-order expansion. We emphasize that

the result is valid when $f \in C^1$ and x^* is an interior point of Ω .

Definition: A point x^* satisfying the FONC condition $\nabla f(x^*) = 0$ is called a *stationary point*.

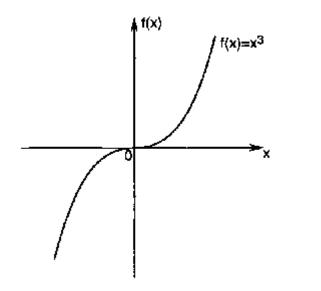
Definition: A function f has **critical points** at all points x_0 where $f'(x_0)=0$ or f(x) is not differentiable.

In several variables case, the same definition can be given as:

A function with several variables has **critical points** where the gradient is 0 or any of the partial derivatives is not defined.

Second Order Sufficient Condition (SOSC):

Let Ω be an open set and f is a twice continuously differentiable function over Ω ($f \in C^2$). The sufficient condition for a local minimizer ($x^* \in \Omega$) is that the Hessian matrix at x^* is positive semidefinite. *Proof of SOSC:* **Example 6.5** Consider a function of one variable $f(x) = x^3$, $f : \mathbb{R} \to \mathbb{R}$.



The point 0 satisfies the FONC but is not a minimizer

This point is an inflection point.

Definition: An inflection point is a point on a curve at which the concavity changes.

A necessary condition for x to be an inflection point is f''(x) = 0. A sufficient condition requires $f''(x + \varepsilon)$ and $f''(x - \varepsilon)$ to have opposite signs in the neighborhood of x.

In multivariable calculus, a point of a function or surface which is a stationary point but not an extremum is called a saddle point.

In summary

FONC: Solve the following equation and obtain all the stationary points.

 $\nabla f(x^*) = 0.$

SOSC: Form the Hessian <u>at each of the stationary points</u>:

If the Hessian is *positive* definite, then that point is a *strict* local minimum,

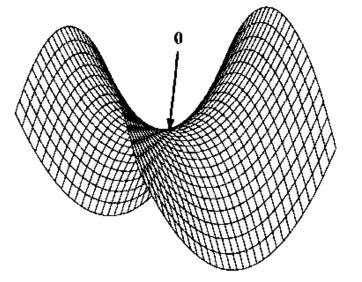
If the Hessian is *positive* semidefinite, then that point is a local minimum,

If the Hessian is *negative* definite, then that point is a *strict* local maximum,

If the Hessian is *negative* semidefinite, then that point is a local maximum.

If the Hessian is indefinite, then that point is a saddle point.

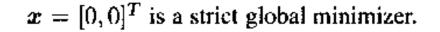
Example 6.6 Consider a function $f : \mathbb{R}^2 \to \mathbb{R}$, where $f(x) = x_1^2 - x_2^2$.

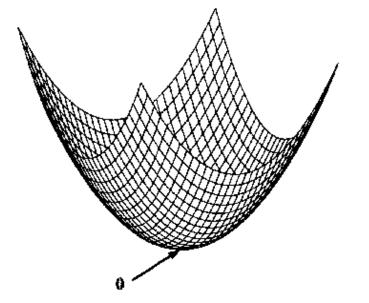


The point 0 satisfies the FONC but not SOSC;

this point is not a minimizer

Example 6.7 Let $f(x) = x_1^2 + x_2^2$.





Example: A small startup company produces speakers and subwoofers for computers that they sell through a website. After extensive research, the company has developed a revenue function,

R(x, y) = x(110 - 4.5x) + y(155 - 2y) thousand dollars

where x is the number of subwoofers produced and sold in thousands and y is the number of speakers produced and sold in thousands. The corresponding cost function is

 $C(x, y) = 3x^2 + 3y^2 + 5xy - 5y + 50$ thousand dollars

Find the production levels that maximize revenue.

Find and classify all the critical points of the following functions: 1) $f(x_1, x_2) = x^3 - x^2y + 2y^2$.

$$2)f(x, y) = (y - 2)x^2 - y^2$$

3) $f(x, y) = 7x - 8y + 2xy - x^2 + y^3$

4) $f = x_1^3 + x_2^3 + x_3^3 - 3x_1^2x_2 - 3x_2^2x_3 - 3x_3^2x_1 + 6x_1 + 6x_2 + 6x_3$

$$f(x,y) = x + \frac{1}{2x+y} - \frac{1}{x+y}$$

$$\nabla f = \begin{pmatrix} 1 - \frac{2}{(2x+y)^2} + \frac{1}{(x+y)^2} \\ -\frac{1}{(2x+y)^2} + \frac{1}{(x+y)^2} \end{pmatrix} \qquad H(f) = \begin{pmatrix} \frac{8}{(2x+y)^3} - \frac{2}{(x+y)^3}; & \frac{4}{(2x+y)^3} - \frac{2}{(x+y)^3} \\ \frac{4}{(2x+y)^3} - \frac{2}{(x+y)^3}; & \frac{2}{(2x+y)^3} - \frac{2}{(x+y)^3} \end{pmatrix}$$

Need to solve the equations $\nabla f(x, y) = 0$:

$$1 - \frac{2}{(2x+y)^2} + \frac{1}{(x+y)^2} = 0, \quad -\frac{1}{(2x+y)^2} + \frac{1}{(x+y)^2} = 0$$

Substracting the second equation from the first one we see that $(2x + y)^2 = 1$ and $(x + y)^2 = 1$ which give us 4 critical points

1) (0,1); 2) (0,-1); 3) (2,-3); 4) (-2,3).

1)
$$H(f)|_{(0,1)} = \begin{pmatrix} 6 & 2 \\ 2 & 0 \end{pmatrix}$$
,
2) $H(f)|_{(0,-1)} = \begin{pmatrix} -6 & -2 \\ -2 & 0 \end{pmatrix}$
3) $H(f)|_{(2,-3)} = \begin{pmatrix} 10 & 6 \\ 6 & 4 \end{pmatrix}$,
4) $H(f)|_{(-2,3)} = \begin{pmatrix} -10 & -6 \\ -6 & -4 \end{pmatrix}$,

٦

Practical Example

A container with an open top is to have 10 m^3 capacity and be made of thin sheet metal. Calculate the dimensions of the box if it is to use the minimum possible amount of metal.

Solution: Let A be the total area of metal used to make the box, and let x and y be the length and width and z the height. Then

$$A = 2xz + 2yz + xy$$

Also

$$xyz = 10$$

because the volume is 10 m³. This implies that $z = \frac{10}{xy}$. Putting this into the formula for A gives A as a function of x and y only:

$$A = 2x\left(\frac{10}{xy}\right) + 2y\left(\frac{10}{xy}\right) + xy$$
$$= \frac{20}{y} + \frac{20}{x} + xy$$

We shall apply our techniques to this function. Now

$$\frac{\partial A}{\partial x} = -\frac{20}{x^2} + y, \quad \frac{\partial A}{\partial y} = -\frac{20}{y^2} + x$$

and for a stationary point we need $\partial A/\partial x = \partial A/\partial y = 0$. this gives

$$y = \frac{20}{x^2}$$
 and $x = \frac{20}{y^2}$

Therefore

$$y = \frac{20}{(20/y^2)^2} = \frac{y^4}{20}$$

Since the zero root y = 0 is obviously not consistent with having a volume of 10 m³ we reject y = 0 and conclude that $y^3 = 20$ so that $y = 20^{1/3} = 2.714$ metres. From $x = 20/y^2$ we conclude x = 2.714 metres also. To find z, use $z = \frac{10}{xy}$ so that z = 1.357 m.

We have to show that these values do indeed give a minimum. Now

$$\frac{\partial^2 A}{\partial x \partial y} = 1, \quad \frac{\partial^2 A}{\partial x^2} = \frac{40}{x^3}, \quad \frac{\partial^2 A}{\partial y^2} = \frac{40}{y^3}$$

So, when (x, y) = (2.714, 2.714),

$$A_{xx}A_{yy} - A_{xy}^2 = (2)(2) - 1^2 = 3 > 0$$

so it is either a max or a min. But $A_{xx} > 0$ and $A_{yy} > 0$ so it is a minimum. Our conclusion is that the box should have length 2.714 m, width 2.714 m and height 1.357 m. The actual area of metal used will then (from the formula for A) be 22.1 m².