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Unconstrained Optimization,

minimize f(x)
subject to x € (1.

The function f : R* — R that we wish to minimize is a real-valued function,
and is called the objective function, or cost function. The vector x is an n-vector
of independent variables, that is, = [z1,%s,...,24]7 € R*. The variables
x1,...,2, are often referred to as decision variables. The set () is a subset of R™,
called the constraint set or feasible set.

The above problem is a general form of a constrained optimization problem,
because the decision variables are constrained to be in the constraint set {1. If
{ = K™, then we refer to the problem as an unconstrained optimization problem.

The constraint “x € )7 is called a sef constraint. Often, the constraint set (2 takes
the form 2 = {z : h{z) = 0, g(z) < 0}, where h and g are given functions.
We refer to such constraints as functional constraints. The remainder of this chapter
deals with general set constraints, including the special case where {3 = R™. The
case where ! = R” is called the unconstrained case,



minimize f(x)
subject to x € ().

minimizer of f over Q
maximizing f is equivalent to minimizing — f

Max versus min: Maximizing a function g is equivalent to minimizing —g, so there’s
no loss of generality in concentrating on minimization. This is the convention in
much of optimization theory
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Figure 1.1 Minimum of f(x) is same as maximum of — f(x). Figure 1.2 Optimum solution of cf (x) or ¢ + f(x) same as that of f(x).
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Local and Global Minimizers

Definition 6.1 Loacal minimizer. Suppose that f : R® — R is a real-valued function
defined on some set £} C R™. A point &* € Q is a local minimizer of f over (1 if
there exists & 3> 0 such that f{z) > f(x*) forallz € O\ {&*} and ||x — z*|| < <.

Global minimizer. A pointx* € is a global minimizer of fover if f(z) > f(x*)
forallz € O\ {z*}.

If, in the above definitions, we replace "> with *>”, then we have a strict local
minimizer and a strict global minimizer, respectively.

* f(x)
& strict global minimizer;
x4 strict local minimizer;

@3- local (not stnct) minimuzer

b= o ———— -




Feasible Direction

Given an optimization problem with constraint set €2, a minimizer may lie either in
the interior or on the boundary of £}. To study the case where it lies on the boundary,
we need the notion of feasible directions.

Definition 6.2 Feasible direction. A vectord € R™, d # 0, is a feasible direction
at & € {1 if there exists g > 0 such that & + ad €  for all o € [0, ag].

- x ; 15 a feasible direction,

ot 5 is not a feasible direction
d,
Let f : R* — R be a real-valued function and let d be a feasible direction at

x € §). The directional derivative of f in the direction d, denoted 9f/8d, is the
real-valued function defined by
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If |d|] = 1, then @f/ad is the rate of increase of f at & in the direction d. To
compute the above directional derivative, suppose that & and € are given. Then,

f(x + ad} is 2 function of o, and

fx +x d) = F(x)

0f dx; Of dx, Of dxy,
F, — cee
() 5x1d0c+5x2doc+ +5xndoc
=Vf(x)'.d

In summary, if 4 is a unit vector, that is, ||d|| = 1, then {V f(x}, d) is the rate of
increase of f at the point z in the direction .



Theorem  First-Order Necessary Condition (FONC). Let () be a subset of R*
and f € C! a real-valued function on Q. If ™ is a local minimizer of f over 0, and

a” is an interior point of {, then

Vi@*) =0.
What happens if Q is an open subset of R" ?

FONC: Let Q be an open set and f is a continuously differentiable function over Q (f € Ct).

If x*€ Q is a minimizer of f, then Vf(x*) = 0.



Vf(x*) =0.

This is the first-order necessary condition for optimality. The condition is " first-
order" because it is derived using the first-order expansion. We emphasize that

the result is valid when f € C'and z* is an interior point of Q.

Definition: A point z* satisfying the FONC condition Vf(x*) =0 is called
a stationary point.

Definition: A function f has critical points at all points xo where f'(xo )=0 or f(x)
is not differentiable.

In several variables case, the same definition can be given as:

A function with several variables has critical points where the gradient is O or
any of the partial derivatives is not defined.



Second Order Sufficient Condition (SOSC):

Let Q be an open set and f Is a twice continuously differentiable
function over Q (f € €#4). The sufficient condition for a local minimizer
(x* € Q) is that the Hessian matrix at x* is positive semidefinite.

Proof of SOSC:




Example 6.5 Consider a function of one variable f(z) = 2%, f 1R = R

§ 1)

fx)=x3

The point 0 satisfies the FONC but is not a minimizer

Y

This point is an inflection point.

Definition: An inflection point is a point on acurve at which the concavity
changes.

A necessary condition for x to be an inflection point is f” (x) = 0. A sufficient

condition requires f (x +¢) and f (x — &) to have opposite signs in the
neighborhood of x.

In multivariable calculus, a point of a function or surface which is a stationary

point but not an extremum is called a saddle point. y



In summary

FONC: Solve the following equation and obtain all the stationary
points.

Vf(x*) = 0.

SOSC: Form the Hessian at each of the stationary points:

If the Hessian is positive definite, then that point is a strict local
minimum,

If the Hessian is positive semidefinite, then that point is a local
minimum,

If the Hessian is negative definite, then that point is a strict local
maximum,

If the Hessian is negative semidefinite, then that point is a local
maximum.

If the Hessian is indefinite, then that point is a saddle point.



Example 6.6 Consider a function f : R? — R, where f(x) = z{ — z3.

The point O satisfies the FONC but not SOSC;

this point is not 4 minimizer
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a = [0,0]7 is a strict global minimizer.




Example: A small startup company produces speakers and subwoofers for
computers that they sell through a website. After extensive research, the company
has developed a revenue function,

R(x,y) = x(110 — 4.5x) + y(155 — 2y) thousand dollars

where x is the number of subwoofers produced and sold in thousands and y is the
number of speakers produced and sold in thousands. The corresponding cost
function is

C(x,y) = 3x% + 3y? + 5xy — 5y + 50 thousand dollars

Find the production levels that maximize revenue.



Find and classify all the critical points of the following functions:
D) f(x1,x2) = x° — x%y + 2y°.



)fCy) = —2)x*—y?
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3) f(x,y) = 7x — 8y + 2xy — x? + y3
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4) f = x3 + x5 + x5 —3x%x, —3x3x3 —3x%x; +6x; +6x, + 6x3
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Vf:( Y 'ly) H(f)= A 2" 3
T @aty? T @t)? @e+y)® @y’ @aty)® | @+y)®
Need to solve the equations Vf(z,y) = 0:
R - T S
2zx+y)?  (z+y)? = (2z+y)? (z+y)?

Substracting the second equation from the first one we see that (22 + y)? = 1 and
(x 4+ y)? = 1 which give us 4 critical points

1) (0,1); 2) (0,—1): 3)(2,-3): 4) (=2.3).

0 #(Dlen = (5 o)

—6 -2
2) H(f)l0,—1) = (_2 0 )

) HDlems = (g §):

*L) H(f)ll:—Z._S) — (_—160 :i) 18



Practical Example

A container with an open top is to have 10 m?* capacity and be made of thin sheet
metal. Calculate the dimensions of the box if it 1s to use the minimum possible

amount of metal.
Solution: Let A be the total area of metal used to make the box, and let x and y be

the length and width and z the height. Then
A=2r2+42yz+xy
Also
ryz = 10

because the volume is 10 m®. This implies that z = i—g. Putting this into the formula
for A gives A as a function of x and y only:

10 10
A = 2r (—) + 2y (—> + Ty
Ty Ty

20 20
= —+—+21Y
Y T
We shall apply our techniques to this function. Now
oA 20 dA 20

or - 2 Y



and for a stationary point we need dA/dxr = 0A/dy = 0. this gives

20) 20)
V= and z = 2
Therefore
o 20 B y4
Y= 20/42)2 ~ 20

Since the zero root y = 0 is obviously not consistent with having a volume of 10 m?
we reject y = 0 and conclude that y* = 20 so that y = 20Y/% = 2.714 metres.

From z = 20/y? we conclude z = 2.714 metres also. To find z, use z = % so that

2z = 1.357 m.
We have to show that these values do indeed give a minimum. Now
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So, when (z,y) = (2.714,2.714),

AgeAyy — A2, =(2)(2) —12=3>0

so 1t 1s elther a max or a min. But A4,, > 0 and A4,, > 0 so it 1S a minimum.
Our conclusion is that the box should have length 2.714 m, width 2.714 m and height
1.357 m. The actual area of metal used will then (from the formula for A) be 22.1 m?.



