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[terative methods for unconstrained or
set-constrained optimization

In our last lecture, we have seen a theoretical basis for the
solution of nonlinear unconstrained problems.

Suppose that one is confronted with a highly nonlinear
function of 20 variables.

Then the FONC requires the solution of 20 nonlinear
simultaneous equations for 20 variables.

These equations, being nonlinear, will normally have multiple
solutions. In addition, we would have to compute 210 second
derivatives (provided f in C?) to use the SOSC.

Thus, we will now concern with iterative methods of solving
such problems.



Gradients Methods

Let £(® be a starting point, and consider the point z(© — aV f(z®).
Then, by Taylor’s theorem we obtain

f@® —aV @) = f(z9) - el VF)I? + oa?).
if Vf(x(®)) # 0, then for sufficiently small & > 0, we have

f(@® —aVf(z®)) < f(&@).

This means that the point {? — oV f(2(%)) is an improvement over the point (%)
if we are searching for a minimizer.

To formulate an algorithm that implements the above idea, suppose that we are
given a point z'*). To find the next point z(**1), we start at z*) and move by an

amount —a;. V f(2(*)), where ay is a positive scalar called the step size. The above
procedure leads to the following iterative algorithm:

m{k‘"l} — m{k} _ ﬂ’i:vf{ﬂ:{k}]



Remember that the function f increases more in the
direction of the gradient than in any other direction.

A numerical example

The gradient vector of a scalar function f(x,.x,,-

,. . X, ) 1s defined as a column vector
of o]
of @
Vf = { S ‘ —f } =C

Cx, Ox, ox

Z n

For example

e 2 o 2(25)x, | [2(25)(6)] |30
J(x.%,) =255 + x5 —) C—Tf—{ 31‘; }—{ 2(4) }_[8:|

at the point xf = .6‘_.1'; =4
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The normalized gradient vector For example, at the point x, =.6,x, =4
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the function f(x) at x . For example,
£(6.4)=25(.6)> +4> =25 Ifweincrease x in the direction ¢ by a step size of o =.5

@ _ = _ |6 960625 1.083125
X =X +ac= +.5 =
4 2577 4.12885

The function value becomes 7 (x™)=25(1.083125)* +(4.122885)* = 46.327

If we move in a direction [l O]T If we move in a direction [0 1]‘_r
.6 1 1.1
I{U:Im}-l-a’f:[ }+.5[ }z{ } xV =x" +ac= © +.5 ol=|
4 0 4 4 1 4.5
The function value becomes The function value becomes
F(x®)=25(1.1)* +(4)* =46.25 F(xD)=25(.6)% +(4.5)> =29.25

We can see that moving along the gradient direction results in the maximum increase in
the function.
] . . ® ;
The maximum rate of change of f(x) at any point x 1s the magnitude of

the gradient vector given by |j¢| =+/¢’c
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HW:Find the maximum rate of change of f(.x,y) = xg¢™ +3y atthe point (1,0)
and the direction in which it occurs.

Solution: The maximum rate of change occurs in the direction of the gradient
vector Vf(x,y) , and the maximum rate of changeis at |V f (x, y)|.

"F’f(.x,y):{ g’ —xe™ +3 >
VA(,0)=<1, 2>

vrLo)= <1, 25|=45

Thus the maximum rate of change is V/5 in the direction Vf(1,0) =11 2]%.

Thus, the direction in which V f(x) points is the direction of maximum rate of
increase of f at . The direction in which —V f(x) points is the direction of
maximum rate of decrease of f at . Hence, the direction of negative gradient is a
good direction to search if we want to find a function minimizer.



The method of steepest descent

The method of steepest descent is a gradient algorithm where the step size ay, is
chosen to achieve the maximum amount of decrease of the objective function at

each individual step. Specifically, o is chosen to minimize ¢x(c) = f(z® —
aV f(x(*))). In other words,

Qp = a.rg;réin F(x® — aVf(z®)).

; f=C3
!
!

o) D

x{2) T~ f=cy

f="-C-|

-
—

e
x(0) T=_ Cp>C1>Ca>Cq

-~

Figure 8.2 Typical sequence resulting from the method of steepest descent



In summary, the steepest descent algorithm can be given as
follows:
Step 1: Choose x(9 .

Step 2: Calculate Vf(x(i)). If Vf(x(i)) = 0, stop.

Step 3: Determine the next point xt1) with
x(HD = x (), Vf(x(i)) where «; is choosen to minimize the
function f (x(i)—oci Vf(x(i))). Seti =1+ 1and go to Step 2.

Example : Let f(x,y) = x? + y2. Find a minimizer of f with the method of

steepest descent assuming the initial point as (1,1).



The method of steepest descent for a quadratic function

Let us now see what the method of steepest descent does with a quadratic function
of the form

flx) = §mTQm - bz,

where @ € R™"*" is a symmetric positive definite matrix, b € R™, and z € R™. The
unique minimizer of f can be found by setting the gradient of f to zero, where

Vf(m) = Qﬂ: - ba
because D (27 Qz) = 2T(Q+ Q") = 227 Q, and D(b" z) = b

The Hessian of f is F(z) = Q = QT > 0.



To simplify the notation we write g'f! = V f{x*)), )
Then, the steepest descent algorithm for the quadratic function can be represented as

2+ = B _ o (0

where o = argmin f(z!* — agl®)
x> {)
= argmin (%(m“" — ag" T Q(x™®) — ag'®l) — (2 — ag{k})Tb) :
x>0

In the quadratic case, we can find an explicit formula for o, We proceed as follows.
Assume g(®) £ 0, for if g(¥) = 0, then 2(*) = z* and the algorithm stops. Because
ax > 0 is a minimizer of ¢ (a) = f(x'®) — ag®), we apply the FONC to ¢ ()
to obtain

¢ (@) = (2 — ag®TQ(—g®)) — b (—g®).



Therefore, ¢} (o) = 0 if ag®TQg*) = (x*TQ — p7)g¥), But

2WTQ _ pT = T,

Hence,
g(k)Tg(k)

b= gmT Qg

(84

In summary, the method of steepest descent for the quadratic takes the form

k)T . (k
(k1) — (k) _ g 7g®) g¥)
gWTQg® )

where
g®) = v f(z®) = Qz*) - b.



Example 8.2 Let
f(z1,22) = 27 + 25.

Then, starting from an arbitrary initial point (% € R? we arrive at the solution
x* = 0 € R? in only one step. See Figure 8.6.



However, if

zi

f(fL'l,.’Eg) = ? + :B%,

then the method of steepest descent shuffies ineffectively back and forth when search-
ing for the minimizer in a narrow valley (see Figure 8.7). This example illustrates
a major drawback in the steepest descent method. More sophisticated methods that
alleviate this problem are discussed in subsequent chapters.

Figure 8.7 Steepest descent method in search for minimizer in a narrow valley



The condition V f (a:("’“)) = 0, however, is not directly suitable as a practical
stopping criterion, because the numerical computation of the gradient will rarely
be identically equal to zero.

A practical stopping criterion is to check if the norm IV f (m(k))” of the gradient
is less than a prespecified threshold, in which case we stop.

Alternatively, we may compute the absolute difference | f(z(¥+1)) — f(z(*))|
between objective function values for every two successive iterations, and if the

difference is less than some prespecified threshold, then we stop; that is, we stop
when

[f®)) - feW)] <,
where € > 0 is a prespecified threshold.



Yet another alternative is to compute the norm [|z(*+1) — 2(¥)|| of the difference
between two successive iterates, and we stop if the norm is less than a prespecified

threshold:
le* T — )| < e,

Alternatively, we may check “relative’ values of the above quantities; for example,

|f(@*D) - faW))]

< g,
| f(x(k))]
or
”m(k+l) _ m(k)” e
|z (®))| '

Note that the above stopping criteria are relevant to all the iterative algorithms we
discuss in this part.



With the stopping criteria modification, the steepest descent
algorithm can be given as follows:

Step 1: Choose x(9 .

Step 2: Calculate Vf(x(i)). If Vf(x(i)) = 0 or the selected
stopping criteria is satisfied, then stop.

Step 3: Determine the next point x¢*1 with
xWD) = xW—o¢; 7f(x®) where «; is choosen to minimize the

function f (x(i)—oci Vf(x(i))). Seti =1+ 1and go to Step 2.



Example : Let f(x,y) = x? + y% + xy — 3x. Find a minimizer of f with

a) Analytical method

b) The method of steepest descent with the following stopping criteria
L|IVf(x)ll < 0.8,
i |f(x®* D) — f(x®)| < 0.2.
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Point
x(® = (0,0)T

xM = (3/2,0)T
x@® = (3/2,-3/4)T
x®) = (1.875,-0.75)T
x® = (1.875,—0.9375)7
x®) = (1.9688,—0.9375)7
x(®) = (1.9688, —0.9844)T

x(7) = (1.9922,—-0.9844)T

f value
0

-2.25

-2.8116

-2.9531

-2.9883

-2.9971

-2.9993

-2.9998

E
5]

[—0.75]
[O.375]
Nk

o
o

[0.0234]

oy
0.5

0.5

0.5
0.5
0.5
0.4995
0.5

0.5



Point
x® =(1.9922,-0.9961)7

x = (1.9981,-0.9961)T
x(10) = (1.9981,—0.9990)T
x(11) = (1.9996,—0.9991)T
x(12) = (1.9996,—0.9998)T
x(13) = (1.9999, -0.9998)T
x(% = (1.9999,-1)T

x(13) = (2,-1)"

f value
3

3

-3

-3

-3

-3

-3

-3

¥

-

0.001

e

0.0059

0.0028

0.0001

0.001

0.0014

[0.001
—0.6
0.001

|

0.0003

|

0
0

|

0.0002
0.0001

|

|

ay
0.5

0.4917

0.5185

0.4668

0.5

0.5

0.3571



Quadratic Function

0 € R™ s a positive definite matrix and X€R";

f(x) Z%x’ex—x’b

. %2 2
Forn—z’ deR ’XER

ORI i S

:%[ax+cy bx+dy]{ﬂ— ex+ fy]

_ %[ax2 +cxy +bxy +dy? | —[ex+ fy]

f(x):%axz+%dy2+%(b+c)xy—ex+ fy

a: twice the coefficient of X°

. . . 2
d: twice the coefficient of ¥
b+C: twice the coefficient of XY

€: reverse sign of the coefficient of X

f': reverse sign of the coefficient of Y



The derivative of a quadratic function

—:ax+(b+c)y—e a (b+c)

OX 2 2 X e
pee) [V 7] g {ny}

i:dy+( X— f d

oy 2 , | 2 _

Since ¢ is a symmetrical matrix, then D=C_ Thus, we have

o ST gl



