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The Newton’s method
The conjugate direction methods



Newton’s Method

Recall that the method of steepest descent uses only first derivatives (gradients) in
selecting a suitable search direction. This strategy is not always the most etfective.
[f higher derivatives are used, the resulting iterative algorithm may perform better
than the steepest descent method.

Newton’s method (sometimes called the Newton- Raphson method) uses first

and second derivatives and indeed does perform better than the steepest descent
method if the initial point is close to the minimizer.

idea behind this method is as follows. Given a starting poiat, we construct a quadratic

approximation to the abjective function that matches the first and second derivative
values at that point.

We then minimize the approximate (quadratic) function instead
of the original objective function. We use the minimizer of the approximate function
as the starting point in the next step and repeat the procedure iteratively.



If the objective function is quadratic, then the approximation is exact, and the method
yields the true minimizer in one step.

If, on the other hand, the objective function 15 not quadratic, then the appmmmatmﬂ
will provide only an estimate of the position of the true minimizer.

Figure 9.1 illustrates the above idea,
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x(k) ¢
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Figure 9.1 Quadratic approximation to the objective function using first and second deriva-
tives



We can obtain a quad}atic approximation to the given twice continuously differ-
entiable objection function f : R® — R using the Taylor series expansion of f about
the current point z(¥), neglecting terms of order three and higher. We obtain

f@) ~ f@®) + (@~ 2®)Tg® + (2 ~ )T Fa®)(@ - 2¥) 2 g(a),

where, for simplicity, we use the notation g'*) = ¥ f((*)), Applying the FONC to
q yields

0 = Vg(z) = g¢'® + F(z®)(z - =),
If F(z(®)) > 0, then g achieves a minimum at

This recursive formula represents Newton’s method.



Example: Find the minimizer of f(X)=2X+2xX, +2x: —4x —6X, with the starting point

1
Xy = L} by using Newton’s method.



Conjugate Direction Methods

The class of conjugate direction methods can be viewed as being intermediate between
the method of steepest descent and Newton’s method. The conjugate direction

methods have the following properties:
1. Solve quadratics of n variables in n steps;

2. The usual implementation, the conjugate gradient algorithm, requlres no Hes-
sian matrix evaluations;

3. No matrix inversion and no storage of an n X n matrix required.
Basically, two directions d'* and d'® in R™ are said to be Q-conjugate if dVTQd'? = 0.

Definition 10.1 Let Q be a real symmetric n X n matrix. The directions
d(o),d(l),d(z),. d( are Q-conjugateif, for all 1 # j, we have d ")TQd ) = .



Lemma 10.1 Let QQ be a symmetric positive definite n X n matrix. If the directions
d(o),d(l), e d* e R, k < n — 1, are nonzero and Q-conjugate, then they are
linearly independent.

Proof. Letag,...,ay be scalars such that

aod(o) -+ ald(l) + ...+ akd(k) =0.

Premultiplying the above equality by dv )TQ, 0 <35 <k, yields

ajd(j)TQd(:i) =0,

i # j, by Q-conjugacy. But Q = Q¥ > 0

because all other terms d)7' Qd'*) = 0,
0,1,...,k. Therefore, d®, d ... d®),

and d) # 0; hence o; = 0, j
k < n — 1, are linearly independent.



Example 10.1 Let

Q=

— O QA
BN e O
LI N

Note that Q = QT > 0. The matrix Q is positive definite because all its leading
principal minors are positive:

Our goal is to construct a set of Q-conjugate vectors dt® . d , d?.

Let d© = [1,0,0]7, d® = [dV,d{",d{"1T, d® = [@P,d(?,dP]T. We
require d(B)TQd(l) = 0. We have

- o [0
3 0 1] |d;

d9TQdV =[1,0,00{0 4 2| |4V
1 2 3 d:gl)




Letd") = 1,d{" = 0,d{") = —3. Then,d®) = [1,0, —3]7, and thus d T QdV) =
0.

To find the third vector d'*}, which would be Q-conjugate with d'¥ and d'*’, we
require d(o)TQd(2) = 0 and d(l)TQd(z) = 0. We have

dOTQd® = 3d® +df =y,
dVTQd® = -6d? -8dy = 0.

If we take d'?) = [1,4, —3]7, then the resulting set of vectors is mutually conjugate.

A systematic procedure for finding )-conjugate vectors

Qx=>



1. Basic Conjugate Direction Algorithm

We now present the conjugate direction algorithm for minimizing the quadratic
function of n variables

f(@) = 72" Qa — 2",

where Q = Q7 > 0, € R". Note that because Q > 0.

Given a starting point (?), and Q- conjugate directions d'®,d¥,...,d"" ™V for k > 0,

¥ = Vfa®)=Qa® -b,
g(k)Td(k)
X = — y
d(k)TQd(k)

Theorem 10.1 For any starting point =%, the basic conjugate direction algorithm
converges to the unique x* (that solves Qx = b) in n steps; that is, '™ = x*.



Example 10.2 Find the minimizer of
f(z1,22) = - r—axl ~1 x € R’
1 9 2 9 1 ’ 3

using the conjugate direction method with the initial point z(®) = [0,0]7, and Q-

conjugate directions d® = [1,0]T and dV) = [~ %]T-

We have ¢'% = —b=[1,-1]7,

g(O)Td(U)
d(O)TQd(U) =

and hence (g = —

Thus, =1 =2© + ad® =



To find 2(®), we compute gt = Qz*) — b =

Therefore, 2 = 2V + q;d® =

Because f is a quadratic function in two variables, (% = x*.



2. Conjugate Gradient Algorithm

Our first search direction from an initial point 2{?) is in the direction of steepest descent;
that is,

d® = —g(0,
Thus, (1) = 2@ + O!()d(o), where
(0)T 4(0)
— . (0) y_ _9
Qg = arg;rém f(@" + ad’) = dOTQg®

In the next stage, we search in a direction d'V that is (Q-conjugate to d'?. We choose
d!) as a linear combination of g{1) and d'®). In general, at the (k + 1)st step, we

choose d'*11) to be a linear combination of g(*+1) and d®. Specifically, we choose
dFtD) = gkt 4 g d®)  k=0,1,2,....
The coefficients 8;, k = 1, 2,. . ., are chosen in such a way that dF+1) g (Q-conjugate

to d\® , d(”, - ,d(k). This is accomplished by choosing §;, to be

8, = g(k+1)TQd(k)
T AT Qa®




The conjugate gradient algorithm is summarized below.

1.
2.

Q= —

Set k := 0; select the initial point z(®).
g©® = V(). 1f g© = 0, stop, else set d» = —g(®,

g(k)crd(k)
d(k)T’Qd(k)' |

) = 2(®) 4 o, d).

. gkt = ¢ f(zE+D) If g(k+1) = 0, stop.

(k+1)T d(k)
ﬂk = gd(k)TQQd(k) '

dt1) — —glk+1) 4 B, d®)

. Setk :=k + 1; go to step 3.



Example 10.3 Consider the quadratic function

3 3
f($1,$2,$3) = 523? + 2.’1:% + §$§ + 1723 + 22273 — 31 — T3.

We find the minimizer using the conjugate gradient algorithm, using the starting point
x(® = [0,0,0]T.

We can represent f as  f(z) = %mTQ:c —x7p,

- —y - —

3 0 1 3
where Q=10 4 21, b=1|0

1 2 3 1]
We have

g(x) =Vf(x) =Qx —b=[3z, + x5 — 3,413 + 223,71 + 223 + 323 — 1]7.

Hence, ¢'© = [-3,0,-1]T, d® = —g©



g(O)Td(U) 10

) = 20 4 0,d® = [0.8333,0,0.2778]7.

o

The next stage yields

gV = VW) =[-0.22220.5556,0.6667]",

()T (0)
_ ¢ Qd>™
Bo = PP = 0.08025.

We can now compute

dV = —gM 4 ,d® = [0.4630, —0.5556, —0.5864].

Hence,
g(l)Td(l)

a1 = _d(l)TQd(l) = 0.2187,

z(?) = ) + a;dV =[0.9346, —0.1215, 0.1495].



To perform the third iteration, we compute

9(2)
B1
d?
Hence,
and
Note that

= Vf(®) = [-0.04673, 0.1869,0.1402],
2T O (1)
- 97 Qd " or07s,

~g® + p1d™) = [0.07948,0.1476, ~0.1817].

Il

gdTd?

02 =~ Girgg® = 08231

2® = 2 1 a,d@® = [1.000,0.000,0.000].

g® =vfz®) =0,

as expected, because f is a quadratic function of three variables. Hence, * = x(3).



3. Conjugate Gradient Algorithm
for non-quadratic problems

For a quadratic, the matrix @, the Hessian of the quadratic, is constant.

However, for a general nonlinear function the Hessian is a matrix that has to be
reevaluated at each iteration of the algorithm.

This can be computationally very expensive. Thus, an efficient implementation of

the conjugate gradient algorithm that eliminates the Hessian evaluation at each step
is desirable.



The Hestenes-Stiefel formula.

g(k+1)TQd(k)

dPTQd® QdY) ——> (g+D) — gy /q,.

Recall that B =

The two terms are equal in the quadratic case, as we now show.
Now, **1) = £(*) 4 a,d®. Premultiplying both sides by Q, and recognizing
that g¥) = Qx%) — b, we get g+ = g 4 o, Qd®, which we can rewrite
as Qd™®) = (g(-+1) — g(k)) /oy Substituting this into the original equation for Sy
gives

5 gk+DT[g(k+1) _ g(k)]
£ dFT[gk+1) _ g(k)]

?

which is called the Hestenes-Stiefel formula.



gEFDT[gk+1) _ (k)]
g(k)Tg(k)

The Polak-Ribiére formula. Br =

(k+1)T g(k+1)
gOTgk)

The Fletcher-Reeves formula. B = g

For nonquadratic problems, the algorithm will not usually converge in n steps,
and as the algorithm progresses, the “Q-conjugacy” of the direction vectors will tend
to deteriorate. Thus, a common practice is to reinitialize the direction vector to the
negative gradient after every few iterations (e.g., n or n + 1), and continue until the
algorithm satisfies the stopping criterion.
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Example:
Let f(x), = [z1,z2]! € R?, be given by

5 1
flx) = --:1:1 + = 5% T5 4 22172 — 3Ty — Ta.
a. Express f(x) in the form of f(z) = 12”7 Qz — =™b.

b. Find the minimizer of f using the conjugate gradient algorithm. Use a starting
point of (%) = [0, 0]7.

c. Calculate the minimizer of f analytically from  and b, and check it with your
answer 1n part b.
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