MATLAB Tutorial Session \#1

MTM4502-Optimization Techniques
Instructors: Hale GONCE KÖÇKEN, Gökhan GÖKSU
Date: 26/04/2024

Main Task

Write a MATLAB program to find the minimum of the function

$$
f(\mathbf{x})=0.25 x_{1}^{4}-0.5 x_{1}^{2}+0.1 x_{1}+0.5 x_{2}^{2}
$$

subject to $-2 \leq x_{i} \leq 2$, for $i=1,2$, by using Newton-Raphson and Hestenes-Stiefel algorithms. Repeat the main steps of your algorithms until the desired accuracy is achieved, i.e.

$$
\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\| \leq \epsilon\left(\text { or }\left|f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right| \leq \epsilon\right)
$$

Take the initial guess as $\mathbf{x}_{0}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$ and absolute error bound as $\epsilon=10^{-4}$ for every algorithm. The global minimum is located at $\mathbf{x}^{*}=\left[\begin{array}{ll}-1.0465 & 0\end{array}\right]^{\top}, f\left(\mathbf{x}^{*}\right) \approx-0.3523$. You may see sample realizations of these algorithms as the following.

```
Newton-Raphson Algorithm
k=1, x1=-1.000000, x2=1.000000, f(x)=0.150000
k=2, x1 =-1.050000, x2=0.000000, f(x)=-0.352373, abs. error =0.502373
Elapsed time is ... seconds.
Hestenes-Stiefel Algorithm
k=1, x1 =-1.000000, x2=1.000000, f(x)=0.150000
k=2, x1=-1.099000, x2=0.010000, f(x)=-0.349055, abs . error =0.499055
Elapsed time is ... seconds.
```

Answer the following questions:

- How many steps does it take to find the minimum of this function with both of these algorithms?
- What are the execution times of these algorithms? Does this make sense?
- Does the convergence depend on the initial conditions? Why?
- Based on the last two questions, what can be the reason for this trade-off?
- Do you expect the same number of steps and execution times, when you change the stopping criterion and the absolute error bound?

Figure 1: Newton-Raphson Algorithm.

Figure 2: Hestenes-Stiefel Algorithm.

