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Linear vs Nonlinear Systems

Figure: YouTube Playlist: “Nonlinear Control Systems" Course.

YouTube Playlist: https://www.youtube.com/playlist?
list=PLc2vvxBHfBcoqxoZXx9wS_3elT-_U0B-r
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Linear vs Nonlinear Systems

Linear Systems
Linear time-invariant (LTI) systems have
the following form

ẋ = Ax + Bu, x(0) = x0

where A ∈ Rn×n, B ∈ Rm×n. The solution
of these type of systems will be

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

Some control inputs may be

proportional state feedback:

u(t) = K x(t)

proportional-integral-derivative
(PID) feedback:

u(t) = Kp

(
x(t) +

1
Ti

∫ t

0
x(τ)dτ + Td ẋ(t)

)

Nonlinear Systems
Nonlinear systems are of the
general form

ẋ(t) =fp(t , x(t), u(t)),

u(t) =γ(t , x(t))

Generally, no general way
to express the analytical
solution!

No linear algebra tools!

No Laplace transform
methods!

New set of methods for
the analysis and design
of nonlinear systems is
needed.
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Linear vs Nonlinear Systems
In this course, we consider nonlinear dynamical systems of the form

ẋ1 = fp1(t , x1, x2, ..., xn,u1, ...,um)

...
ẋn = fpn(t , x1, x2, ..., xn,u1, ...,um)

(1)

Note that, the aforementioned system of equations (1) can be written
in compact form as

ẋ(t) =fp(t , x(t),u(t)), (2)

If the system input u(t) = γ(t , x(t)) is applied to (2) where γ is a
function of time t and state x , then we have

ẋ = fp(t , x , γ(t , x)) =f (t , x) (3)

which is called as a TV/nonautonomous system. For the special case
when the time t does not appear explicitly in all equations of (1) mean-
ing that the right hand sides are only a function of the state x (not of t),
the system is called a TI/autonomous system and can be expressed
as ẋ = f (x) in compact form.
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Examples of Nonlinear Systems

In this section, we present some examples of specific nonlinear func-
tions and systems:

Systems with Input Saturation: Most actuators (control inputs)
have physical limits. So, these type of physical systems can be
represented by saturation function as:

ẋ =Ax + Bsat(u)
u =PID(x)

(4)

where the saturation function is defined as

Figure: Saturation Function y = sat(x).
(Guess the drawback!)

sat(x) =

{
x , if |x | ≤ 1
sgn(x), if |x | > 1.
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Examples of Nonlinear Systems

Systems with Input Saturation: Most actuators (control inputs)
have physical limits. For example,

valves (musluk vanaları)

Figure: A Valve.
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Examples of Nonlinear Systems

Systems with Input Saturation: Most actuators (control inputs)
have physical limits. For example,

variable speed limits
max speed limit: 120 km/h
min speed limit: 50 km/h

Figure: A VSL Implementation.
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Examples of Nonlinear Systems

Systems with Input Saturation: Alternatively, there is an an-
other type of saturation function in literature which is differentiable
and hence enables the linearization of the nonlinear system at an
equilibrium point:

sat(x ;a,b) = a +
2(b − a)

π
tan−1(x) (5)

where a and b are the minimum and maximum VSL operating
values, respectively.

Variable Speed Limit (VSL): Tool in ITS to improve the
measures in traffic flow by changing the speed limit on a
highway segment.

G. Göksu, M. A. Silgu, I. G. Erdagi and H. B. Celikoglu,
Integral Input-to-State Stability of Traffic Flow with
Variable Speed Limit, IFAC-PapersOnLine, 54 (2),
31-36.
YouTube Presentation:
https://www.youtube.com/watch?v=a9C8TAf7Zqw
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Examples of Nonlinear Systems

Figure: Saturation Function y = sat(x ;a,b).
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Examples of Nonlinear Systems

Systems with Quadratic Terms: Electric motors in hybrid cars
(KYP Video Lectures)

Lorentz Attractor: Lorentz attractor is a system of ordinary dif-
ferential equations first studied by mathematician and meteorolo-
gist Edward Lorenz. It is notable for having chaotic solutions for
certain parameter values and initial conditions. In particular, the
Lorenz attractor is a set of chaotic solutions of the Lorenz sys-
tem. In popular media the “butterfly effect" stems from the real-
world implications of the Lorenz attractor, namely that in a chaotic
physical system, in the absence of perfect knowledge of the ini-
tial conditions (even the minuscule disturbance of the air due to a
butterfly flapping its wings), our ability to predict its future course
will always fail. This underscores that physical systems can be
completely deterministic and yet still be inherently unpredictable.
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Examples of Nonlinear Systems

Lorentz Attractor: The model is a system of three ordinary differential
equations now known as the Lorenz equations:

ẋ = 6(y − x)

ẏ = rx − y − xz

ż = xy − bz

(6)

Here, the variables of the Lorentz system are given as follows:

x : rate of convection,
y : horizontal temperature variation,
z: vertical temperature variation.

Even though the model looks like simple, the system behavior of (6) is
quite complex and the linear approximation of the system is not able to
describe this kind of behavior. In particular, the system displays what is
called the “Lorentz attractor", a set of chaotic solutions which resemple
a butterfly figure (KYP Video Lecture).

So, these are some examples where the nonlinearities are so essential
that it is not adequate and sometimes not at all possible to describe the
system behavior by a linearized model because nonlinear systems may
display complex behavior that the linear systems can not reproduce.
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Superposition Principle

Linear and nonlinear systems demonstrate different behavior with re-
spect to the linear combination of different inputs.

For linear systems ẋ = Ax + Bu: If input u1 produces the state
x1 and the output y1, and input u2 produces the state x2 and the
output y2 then the input u = u1 + u2 produces x = x1 + x2 and
y = y1 + y2. Schematically, if

then,

For nonlinear systems ẋ = f (x ,u): There is no such a super-
position principle (more complex behavior).
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Invariant Sets

When we analyze the dynamics of nonlinear systems, we focus on
the behavior in and around invariant sets. This is because we have
results saying that if the system states do not escape to infinity, then
the system states will always end up in an invariant set. Now, we
will analyze the invariant sets of ẋ = f (x) (TI systems). One type of
invariant sets is the equilibrium point.

Definition (Equilibrium Point)

x∗ is an equilibrium point of ẋ = f (x) if and only if f (x∗) ≡ 0 holds.

This definition tells us that if the system starts in the state x∗ it will
remain in this state for all future time. The general definition definition
of invariant sets is as the following.

Definition (Invariant Set)

A set M is an invariant set of ẋ = f (x) if and only if

x(0) ∈ M ⇒ x(t) ∈ M, ∀t ≥ 0. (7)

13 / 16 Gökhan Göksu, PhD MTM5101



Invariant Sets

Definition (Invariant Set)

A set M is an invariant set of ẋ = f (x) if and only if

x(0) ∈ M ⇒ x(t) ∈ M, ∀t ≥ 0. (8)

Figure: An Invariant Set Example.
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Invariant Sets
Question: Which invariant sets do linear systems have?

One equilibrium point: ẋ = Ax ⇐⇒ x∗ ≡ 0

May in addition have periodic solutions: x(t + T ) = x(t)

To illustrate this, let us consider the two dimensional system (n = 2).

15 / 16 Gökhan Göksu, PhD MTM5101



Invariant Sets

Question: Which invariant sets do nonlinear systems have?

Equilibrium points, one or more

Periodic solutions

Limit cycles

General invariant set (chaos)
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