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Fundamental Properties: Existence and Uniqueness

Example

Today, we will continue the Lipschitz continuity of the following function

f (x) = [ x2
−sat(x1 + x2)

]

where the saturation function is defined as

sat(x) =
⎧⎪⎪⎨⎪⎪⎩

x , if ∣x ∣ ≤ 1
sgn(x), if ∣x ∣ > 1.

f is not continuously differentiable on R2.

Note that, the saturation function satisfies

∣sat(ξ) − sat(η)∣ ≤ ∣ξ − η∣
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Fundamental Properties: Existence and Uniqueness

Example

f (x) = [ x2

−sat(x1 + x2)
]

Using ∥ ⋅ ∥2 in R2, we have

∥f (x) − f (y)∥22 =∥[
x2 − y2

sat(y1 + y2) − sat(x1 + x2)
]∥

2

2

≤(x2 − y2)2 + (sat(y1 + y2) − sat(x1 + x2))2

≤(x2 − y2)2 + (y1 + y2 − x1 − x2)2

≤(x1 − y1)2 + 2(x1 − y1)(x2 − y2) + 2(x2 − y2)2

Using the inequality1

a2 + 2ab + 2b2 = [ab]
T

[1 1
1 2] [

a
b] ≤ λmax ([

1 1
1 2])∥[

a
b]∥

2

2

we conclude that

∥f (x) − f (y)∥2 ≤
√

2.618∥x − y∥2, ∀x , y ∈ R2.

1
For positive semi-define symmetric matrices, we have x⊺Px ≤ λmax(P)x⊺ ⋅ x, ∀x ∈ Rn .
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Fundamental Properties: Existence and Uniqueness

Example

f (x) = [ x2
−sat(x1 + x2)

]

If we have used the more conservative inequality2

a2 + 2ab + 2b2 ≤ 2a2 + 3b2 ≤ 3(a2 + b2).

then, a more conservative (larger) Lipschitz constant (L =
√

3)
will be obtained:

∥f (x) − f (y)∥2 ≤
√

3∥x − y∥2, ∀x ,y ∈ R2.

2The following holds, for any λ > 0,

(
√
λa − b√

λ
)

2

= λa2 − 2ab + b2

λ
≥ 0 ⇐⇒ 2ab ≤ λa2 + b2

λ
, ∀a,b ∈ R,
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Fundamental Properties: Existence and Uniqueness

Example

Consider the scalar system

ẋ = −x2, with x(0) = −1

The function f (x) = −x2 is locally Lipschitz for all x ∈ R. Hence, it is
Lipschitz on any compact subset of R.

dx
dt
= − x2 Ô⇒ −∫

ξ=x

ξ=−1
ξ−2dξ = ∫

τ=t

τ=0
dτ Ô⇒ x(t) = 1

t − 1
.

Therefore, the solution exists over [0,1]. As t → 1, x(t) leaves any
compact set. The phrase “finite escape time" is used to describe the
phenomenon that a trajectory escapes to infinity at a finite time. In this
example, we say that the trajectory has a finite escape time at t = 1.
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Fundamental Properties: Existence and Uniqueness

Theorem (Global Existence and Uniqueness)

Suppose that f (t ,x) is piecewise continuous in t and satisfies

∥f (t ,x) − f (t ,y)∥ ≤ L∥x − y∥, ∀x ,y ∈ Rn, ∀t ∈ [t0, t1].

Then, the state equation ẋ = f (t ,x) with x(t0) = x0, has a unique
solution over [t0, t1].
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Fundamental Properties: Existence and Uniqueness

Example

Conside the linear system

ẋ = A(t)x + g(t) = f (t ,x)

where A(t) and g(t) are piecewise continuous functions of t .

Over a finite interval of time [t0, t1], the elements of A(t) are bounded.
Hence, ∥A(t)∥ ≤ a, where ∥A∥ is any induce matrix norm. The con-
ditions of “Global Existence and Uniqueness Theorem" are satisfied
since

∥f (t ,x) − f (t ,y)∥ =∥A(t)(x − y)∥
≤∥A(t)∥∥x − y∥ ≤ a∥x − y∥, ∀x ,y ∈ Rn, ∀t ∈ [t0, t1].

Therefore, this theorem guarantees that the system has a unique solu-
tion over [t0, t1]. Since t1 can be arbitarily large, we can also conclude
that the system has a unique solution ∀t ≥ t0. Hence, the system can-
not have a finite escape time.
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Fundamental Properties: Existence and Uniqueness

Example

Consider the scalar system

ẋ = −x3 = f (x).

The function f(x) does not satisfy a global Lipschitz condition since the Jaco-
bian [ ∂f

∂x ] = −3x2 is not globally bounded. Nevertheless, for any initial state
x(t0) = x0, the equation has the unique solution and it can be obtained as

dx
dt
= −x3 Ô⇒ − ∫

ξ=x

ξ=x0

ξ−3dξ = ∫
τ=t

τ=t0
dτ

Ô⇒ ξ−2

2
∣
ξ=x

ξ=x0

= τ ∣τ=t

τ=t0

Ô⇒ x(t) = sign(x0)

¿
ÁÁÀ x2

0

1 + 2x2
0 (t − t0)

Therefore, the equation ẋ = −x3 has a unique solution over t ≥ t0 which means
that the solution is well-defined over t ≥ t0.
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Fundamental Properties: Existence and Uniqueness

From the last example, we see that “Global Existence and Uniqueness
Theorem" is not a necessary and sufficient condition.

We have the following implications:

C1

class of
continuously
differentiable

functions

Ô⇒ locally
Lipschitz

Ex: f(x)= 3√x

/⇐Ô
Ô⇒

C0

class of
continuous
functions
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Second Order Time-Invariant Systems

In this section, we will present the methods for analyzing the behavior
of second order time-invariant systems (n = 2):

ẋ1 =f1(x1,x2)
ẋ2 =f2(x1,x2)

Phase plane is the plane with x1 and x2 along the coordinate axis as
below.

Figure: Phase Plane.
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Second Order Time-Invariant Systems
Having an IVP, the solution can be represented by a curve in the phase plane
which is called a trajectory from x0 as shown the following figure.

Figure: Trajectory.

If we draw the trajectories for several different IVs, we get a family of trajecto-
ries and this allows us to see how the system behaves for different IVs. This
family of trajectories is called a phase portrait as shown below.

Figure: Phase Portrait.
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Second Order Time-Invariant Systems

Analyzing the system behavior in this way by constructing a phase
portrait is called a phase plane analysis.

The equilibrium points in two dimensional systems are denoted by sin-
gular points. These points are called singular because these are the
only points in the phase plane where the slope of the trajectory is not
well-defined:

x∗ ∈ R2 such that [f1(x
∗
1 ,x

∗
2 )

f2(x∗1 ,x∗2 )
] = [00]

The slope/tangent of a trajectory:

dx2

dx1
∣
(x1,x2)=(x∗1 ,x∗2 )

=
dx2
dt

dx1
dt

RRRRRRRRRRR(x1,x2)=(x∗1 ,x∗2 )
= f2

f1
∣
(x1,x2)=(x∗1 ,x∗2 )

(0
0

undetermined)
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Second Order Time-Invariant Systems: Phase Portraits

There are two ways of performing a phase portrait analysis: analytically and/or
computationally. In this lecture, we will learn how to perform a phase portrait
analysis analytically. Let us consider the following example.

Example (Pendulum without Friction)

Let us consider the pendulum equation without friction:

mℓθ̈ = −mg sin θ

A natural choice of the states will be x1 = θ, x2 = θ̇. So, the state space model
will be

ẋ1 =x2 = f1(x1, x2) Ô⇒ x∗2 = 0,

ẋ2 =
g
ℓ
sin x1 = f2(x1, x2) Ô⇒ x∗1 = kπ, ∀k ∈ Z.

and the equilibrium points will be (x∗1 , x∗2 ) = (kπ,0), ∀k ∈ Z.
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Second Order Time-Invariant Systems: Phase Portraits

The slope will be

dx2

dx1
=

dx2
dt

dx1
dt

= f2(x1,x2)
f1(x1,x2)

= −g
ℓ

sin x1

x2
Ô⇒ ∫ x2dx2 = −

g
ℓ
∫ sin x1dx1

Ô⇒ 1
2

x2
2 =

g
ℓ
cos x1 + c

Thus, we can draw the family of trajectories, i.e. the phrase portrait. In
phrase portrait, you can not recover the solution x as a function of time
from a trajectory. So, a phrase portrait does not give information about
the quantitative (Tür: nicel) behavior of the system solutions, but gives
information about the qualitative (Tür: nitel) behavior.

For those equilibrium points that are isolated, meaning that none of
the neighboring points are equilibrium points, we do a local analysis.
If the equilibrium point is part of a whole line of equilibrium points, for
instance, then it is not an isolated one. We will see this further in detail
in the next subsection.
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Second Order Time-Invariant Systems: Local Analysis

Local analysis is equivalent to classify the equilibrium points in second
order TI Systems. What we do then is to determine the qualitative
behavior of the system near the equilibrium point,

By first linearizing the system about the equilibrium point,

Secondly finding the eigenvalues of the resulting system matrix
A and “λ(A)",

Finally classifying the equilibrium point.
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Second Order Time-Invariant Systems: Local Analysis
1) Linearization about the equilibrium point: Given the system

ẋ1 =f1(x1, x2)
ẋ2 =f2(x1, x2)

where f1, f2 ∈ C1 and an isolated equilibrium point x∗ = [x∗1 , x∗2 ]⊺, we have the
following from Taylor’s formula

fi(x1, x2) = fi(x∗1 , x∗2 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+ ∂fi
∂x1
(x∗1 , x∗2 )∆x1 +

∂fi
∂x2
(x∗1 , x∗2 )∆x2 + P(∆x1,∆x2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Higher order terms≈0

for i = 1,2 with ∆x = [x1 − x∗1
x2 − x∗2

]. We can thus approximate the given second

order system with the following linear system

∆ẋ =
⎡⎢⎢⎢⎢⎣

∂f1
∂x1
(x∗1 , x∗2 )

∂f1
∂x2
(x∗1 , x∗2 )

∂f2
∂x1
(x∗1 , x∗2 )

∂f2
∂x2
(x∗1 , x∗2 )

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A

∆x

and A is called the Jacobian of f . Note that, this approximated system is a valid
approximation when the system states are sufficiently close to the equilibrium
point.
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Second Order Time-Invariant Systems: Local Analysis
2) Find the Eigenvalues λ(A): Solve det(λI − A) = 0. Since, n = 2, you will
find two eigenvalues: λ1, λ2

3) Classify the Equilibrium Points: In this step, there are two cases to con-
sider.

Let us consider the first case that λ1, λ2 ∈ R. Then, we have three
subcases to consider:

Consider the subcase that λ2 < λ1 < 0. Then, the equilibrium point
is a stable node, so that all the trajectories converge to zero without
any oscillations. This kind of systems are also called overdamped
second order TI systems.

Figure: Stable node.
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Second Order Time-Invariant Systems: Local Analysis

2) Find the Eigenvalues λ(A): Solve det(λI − A) = 0. Since, n = 2, you will
find two eigenvalues: λ1, λ2

3) Classify the Equilibrium Points: In this step, there are two cases to con-
sider.

Let us consider the first case that λ1, λ2 ∈ R. Then, we have three
subcases to consider:

Consider the subcase that 0 < λ1 < λ2. Then, the equilibrium point
is an unstable node and the phase portrait is demonstrated below.

Figure: Unstable node.
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Second Order Time-Invariant Systems: Local Analysis

2) Find the Eigenvalues λ(A): Solve det(λI − A) = 0. Since, n = 2, you will find two
eigenvalues: λ1, λ2

3) Classify the Equilibrium Points: In this step, there are two cases to consider.

Let us consider the first case that λ1, λ2 ∈ R. Then, we have three subcases to
consider:

Consider the latter subcase that λ2 < 0 < λ1. Then, the equilibrium point is
a saddle point and along v1 which corresponds to the unstable eigenvalue
λ1, the trajectories move away the equilibrium point whereas along v2, cor-
responding to the stable eigenvalue λ2, the trajectories move towards the
equilibrium point which is shown below.

Figure: Saddle point.
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Second Order Time-Invariant Systems: Local Analysis
3) Classify the Equilibrium Points: In this step, there are two cases to con-
sider.

Let us consider the second case that λ1, λ2 ∈ C.
For this case, we will have complex conjugate eigenvalues, i.e.
λ1,2 = α ± jβ, α ∈ R, β > 0. For such kind of systems, the be-
havior of the system trajectories depend on the sign of the real part
of the eigenvalues α:

(a) For α < 0, the equilibrium point of the system is a stable focus.
(b) For α > 0, the equilibrium point of the system is an unstable

focus.
(c) For α = 0, the equilibrium point of the system is a center.

Figure: Phase portraits for (a) a stable focus; (b) an unstable focus; (c) a
center.
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Second Order Time-Invariant Systems: Local Analysis

Nonlinear second-order system

ẋ1 =f1(x1, x2)

ẋ2 =f2(x1, x2), f1, f2 ∈ C1

Linear approximation of nonlinear 2nd order system

∆ẋ = A ⋅∆x

Topological (Tür: Yapısal) Equivalence: If Re(λ1,2(A)) ≠ 0, then the local
behavior of the nonlinear system is topologically equivalent with the behavior
of the linear approximation of the nonlinear system. In other words, in a small
neighborhood of the equilibrium point, we can approximate the behavior of
the nonlinear system by the behavior of its linearization about this equilibrium
point. Note that this is a local result.
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Second Order Time-Invariant Systems: Local Analysis

Next week, we will perform a local analyis for the following example.

Example

The Jacobian matrix of the function

f (x) = [
1
C [−h(x1) + x2]

1
L [−x1 −Rx2 + u]]

with circuit parameters u = 1.2 V, R = 1.5 kΩ = 1.5 × 103 Ω, C = 2 pF =
2 × 10−12 F and L = 5 µH = 5 × 10−6 H of the tunnel-diode circuit of Example
2.1 in [Khalil, 2002] is given by

∂f
∂x
= [−0,5h′(x1) 0,5

−0,2 −0,3]

where

h(x1) =17.76x1 − 103.79x2
1 + 229.62x3

1 − 226.31x4
1 + 83.72x5

1 ,

h′(x1) =
dh
dx1
= 17.76 − 207.58x1 + 688.86x2

1 − 905.24x3
1 + 418.6x4

1 .
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