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Lyapunov Stability: Introduction

Starting from this week, we will start introducing
Lyapunov stability properties for TI (autonomous) systems

Stability
Asymptotic stability
Exponential stability
Local versus global

Lyapunov stability analysis
Lyapunov’s indirect method
Lyapunov’s direct method
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Lyapunov Stability: The Control Problem

Physical system (a process)
Inputs
Outputs

Step of specifications
Keep the temperature at a constant value
Keep the traffic density at a critical value
Keep the concentration of a substance at a certain value
Keep the speed of a car at a constant value (cruise control)

Control law should make the closed-loop system (CLS)
according to the following specifications

Regulation problem
Tracking problem
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Lyapunov Stability: Regulation Problem
xref = const
Ship, car parking, etc.
Find u(t) = γ(t , x(t)) such that the closed-loop system (CLS)
ẋ(t) = fp(t , x(t), γ(t , x(t))) = f̃ (t , x(t)) has a desired behavior.
Desired CLS behavior:

− xref an equilibrium point, i.e. f̃ (t , xref) = 0

− Convergence: limt→∞ x(t) = xref

− Start close Ô⇒ stay close

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≡ Asymptotic
stability

Asymptotic Stabilization Problem

Find u(t) = γ(t , x(t)) such that xref is an asymptotically stable equilibrium point
of ẋ(t) = fp(t , x(t), γ(t , x(t))) = f̃ (t , x(t)).

Coordinate transformation:
e(t) =x(t) − xref (x = xref ⇐⇒ e = 0),

ė(t) =ẋ(t) − ẋref = ẋ(t) = f̃ (t ,e(t) + xref) = f (t ,e(t)) →
xref goes as a para-
meter in the function

Asymptotic Stabilization Problem

Find u(t) = γ(t ,e(t)), e(t) = x(t) − xref such that e = 0 is an asymptotically
stable equilibrium point of ė(t) = f (t ,e(t)).
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Lyapunov Stability: Tracking Problem

xref(t)
Spray painting a car, ship

Desired CLS behavior:

on trajectory Ô⇒ stay on trajectory
convergence to trajectory
start close Ô⇒ stay close

Coordinate transformation:

e(t) =x(t) − xref(t),
ė(t) =ẋ(t) − ẋref(t) = fp(t ,e(t) + xref(t),u(t)) − ẋref(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=f p(t,e(t),u(t))

Asymptotic Stabilization Problem

Find u(t) = γ(t ,e(t)), e(t) = x(t) − xref(t) such that e = 0 is an asymptotically
stable equilibrium point of ė(t) = f p(t ,e(t), γ(t ,e(t))) = f (t ,e(t)).
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Lyapunov Stability

Asymptotic Stabilization Problem (Regulation Problem)

Find u(t) = γ(t ,e(t)), e(t) = x(t) − xref such that e = 0 is an asymptotically
stable equilibrium point of ė(t) = f (t ,e(t)).

Asymptotic Stabilization Problem (Tracking Problem)

Find u(t) = γ(t ,e(t)), e(t) = x(t) − xref(t) such that e = 0 is an asymptotically
stable equilibrium point of ė(t) = f (t ,e(t)).

Therefore, from now on, for simplicity, we will

either consider ẋ = f (t , x), x = 0 equilibrium point
or consider ẋ = f (x), x = 0 equilibrium point.
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Stability Definitions

In this section, we will start with

ẋ = f (x), f ∶ D ⊂ Rn
→ Rn

where x = 0 is the equilibrium point of this system and f is a
locally Lipschitz vector field. We will now define the following
Lyapunov stability properties for the equilibrium point of this sys-
tem:

Stability
Asymptotic Stability (AS)
Exponential Stability (ES)
Global Asymptotic Stability (GAS)
Global Exponential Stability (GES)
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Stability Definitions and Solution Characteristics

Definition (Stability)

x = 0 is called a stable equilibrium point if and only if ∀ε > 0, ∃δ = δ(ε) > 0
such that

∥x(0)∥ < δ⇒ ∥x(t)∥ < ε, ∀ ≥ 0.

In this stability definition, it shall always be possible to keep the system state
arbitrarily close to the equilibrium point by starting sufficiently close.

Definition (Asymptotic Stability)

The equilibrium point x = 0 is (locally) asymptotically stable if and only if

i) x = 0 is stable,

ii) ∃r > 0 such that ∥x(0)∥ < r ⇒ limt→∞ x(t) = 0 (convergence).

Figure: Stability vs Asymptotic Stability.
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Stability Definitions and Solution Characteristics

Definition (Asymptotic Stability)

The equilibrium point x = 0 is (locally) asymptotically stable if and only if

i) x = 0 is stable,

ii) ∃r > 0 such that ∥x(0)∥ < r ⇒ limt→∞ x(t) = 0 (convergence).

Definition (Region of Attraction)

The region of attraction Ra (also called region of asymptotic stability, domain
of attraction or basin) is the set of all points in D ⊂ Rn such that the solution
the solution of ẋ = f (x), x(0) = x0 is defined for all t ≥ 0 and converges to the
equilibrium point x = 0 as t →∞.

According to this defn., if Ra = Rn, then x = 0 is globally asymptotically stable.

Definition (Global Asymptotic Stability)

The equilibrium pt. x = 0 is globally asymptotically stable (GAS) if and only if

i) x = 0 is stable,

ii) ∀x(0) ∈ Rn we have limt→∞ x(t) = 0 (global convergence)

GAS guarantees that x = 0 is the only equilibrium point!
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Stability Definitions and Solution Characteristics

Definition (Global Asymptotic Stability)

The equilibrium pt. x = 0 is globally asymptotically stable (GAS) if and only if

i) x = 0 is stable,

ii) ∀x(0) ∈ Rn we have limt→∞ x(t) = 0 (global convergence)

Question: Why there is a need of a requirement of “stability" in the GAS
definition? Is convergence not sufficient to imply stability?

The answer of this question is “yes", for linear systems; but “no", for nonlinear
systems. So, Convergence /⇒ Stability in general. Let us consider the Vino-
grad’s counter example.

Example (Vinograd’s Counter-Example)

ẋ = x2(y − x) + y5

r 2(1 + r 4)
, ẏ = y2(y − 2x)

r 2(1 + r 4)
where r 2 = x2 + y2

In this system, the equilibrium point is convergent but it is not stable! See the
next slide!
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Stability Definitions and Solution Characteristics

Figure: Vector Field of Vinograd’s System.

Figure Credit (See Page 287):

A. Mironchenko, Input-to-State Stability: Foundations and Applications
Springer Nature, 2023.

See also KYP Lectures (L.3.3-16:07): https://youtu.be/B5PgJgdlz_Y?
list=PLdeo5-jZaFjP9HDqhSt3wzaaVPpRydA9Y&t=967
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Stability Definitions and Solution Characteristics

A particular type of stability exists differing in the way they dissipate along
solutions.

Definition (Exponential Stability)

The equilibrium point x = 0 is (locally) exponentially stable if and only if
∃r , k , λ > 0 such that

∥x(0)∥ < r ⇒ ∥x(t)∥ ≤ k∥x(0)∥e−λt , ∀t ≥ 0.

Again, if RA = Rn , then x = 0 is globally exponentially stable and, again, this
also implies that x = 0 is the only equilibrium point.

Definition (Globally Exponential Stability)

The equilibrium point x = 0 is globally exponentially stable (GES) if and only if
∃k , λ > 0 such that, ∀x(0), we have

∥x(t)∥ ≤ k∥x(0)∥e−λt , ∀t ≥ 0.

Note that, there is no explicit assumption of stability and convergence be-
cause, the estimate guarantee these properties!
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Stability Definitions and Solution Characteristics

Note that, the following implications hold:

Exponential Convergence ⇒ Stability. Because, ∀ε > 0, we can always
find δ = ε

k such that

∥x(0)∥ < δ⇒ ∥x(t)∥ ≤ k∥x(0)∥ e−λt

±
≤1

< k
ε

k
= ε

Exponential Convergence⇒ Asymptotic Stability. Because

lim
t→∞
∥x(t)∥ ≤ lim

t→∞
k∥x(0)∥e−λt = k∥x(0)∥ lim

t→∞
e−λt = 0

holds for all ∥x(0)∥ <∞ which implies convergence.

However, the converse of the last implication does not hold in general:

Asymptotic Stability /⇒ Exponential Convergence. For example, the sys-
tem

ẋ = −x2, x(0) = 1

has the solution x(t) = 1
1+t which is AS but not ES.
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Stability Definitions and Solution Characteristics (Summary)

To sum up, we may summarize the solution characteristics of the Lyapunov
stability definitions as the following:

Stability

Asymptotic stability ≡ Stability + (local) convergence

Exponential stability ≡ Stability + (local) exponential convergence

Global asymptotic stability ≡ Stability + global convergence

Global exponential stability ≡ Stability + global exponential convergence
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Lyapunov Stability Analysis: Lyapunov’s Indirect Method
If we have the “explicit" solution of the dynamical system, then we can easily analyze the
system behavior. However, this is not the general case. If the solution of the dynamical
system can not be obtained “explicitly", then phase plane analysis can be made for
second order systems (in R2). As seen before, the phase portrait of the linearized
system demonstrates the same behavior with the phase portrait of nonlinear system,
locally. Now, we will demonstrate a new method called Lyapunov’s Indirect Method,
which is a generalization of the local analysis to Rn.

Theorem (Lyapunov’s Indirect Method)

Let x = 0 be an equilibrium point for ẋ = f(x) where f ∶ D ⊂ Rn → Rn is C1 and D is a
neighborhood of the origin. Let ẋ = Ax be the linearization of this system where

A =
∂f
∂x
∣
x=0
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

. . .
∂f1
∂xn

⋮ ⋱ ⋮
∂fn
∂x1

. . . ∂fn
∂xn

⎤⎥⎥⎥⎥⎥⎥⎦x=0

Then,

1) The origin is asymptotically stable if Re(λi(A)) < 0 for all i = 1, ...,n (in R2, this
corresponds to the equilibrium point being a stable node or stable focus).

2) The origin is unstable if Re(λi(A)) > 0 for one or more i = 1, ...,n (in R2, this
corresponds to the equilibrium point being on unstable node, saddle point or un-
stable focus).
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Lyapunov Stability Analysis: Lyapunov’s Indirect Method
Note that, in this theorem, we require C1 not Lipschitz continuity. Note also that, there
is no conclusion when Re(λi(A)) ≤ 0 for all i = 1, ...,n or Re(λi(A)) = 0 for some
i = 1, ...,n. Now, let us see how we can use this theorem to analyze the local stability of
a nonlinear dynamical system

Example

Consider the system ẋ = ax−x3. Let us analyze the stability properties of the equilibrium
point x = 0 using Lyapunov’s indirect method.

The equilibrium points of this system are x = 0, x = ±
√

a. Since the vector field is
f(x) = ax − x3, f ∶ R → R which tells us that f ∈ C1, therefore the assumption of
Lyapunov’s Indirect Method is satisfied. Linearizing about x = 0 yields to

∂f
∂x

RRRRRRRRRRRx=0

= a − 3x2
RRRRRRRRRRRx=0

= a ⇒ ẋ = ax

and this implies that λ = a is the only eigenvalue of the linearized system. According to
this result, we have three cases to consider

1) If a < 0, then x = 0 is an LAS equilibrium point.
2) If a > 0, then x = 0 is an unstable equilibrium point.
3) If a = 0, then the Lyapunov’s Indirect Method is inconclusive to classify this equi-

librium point x = 0. In other words, if the system ẋ = −x3, then Lyapunov’s indirect
method does not give any conclusion for this system.
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Lyapunov Stability Analysis: Lyapunov’s Indirect Method

Corollary (for Lyapunov’s Indirect Method)

Let x = 0 be an equilibrium point for

ẋ = f (x), f ∶ D ⊂ Rn → Rn is C1.

Let also A = ∂f
∂x ∣x=0

. Then, the origin is (locally) exponentially stable (LES) if A

is Hurwitz (i.e. Re(λi(A)) < 0 for all i = 1, ...,n).

In the last example, we, therefore, can conclude that the equilibrium point x = 0
of ẋ = ax −x3 for a < 0 is LES. The equilibrium point x = 0 of ẋ = −x3 (for a = 0)
is a LAS but not LES equilibrium point. However, this classification can not
be made by using Lyapunov’s indirect method and further analysis is required
which will be introduced later (Lyapunov’s Direct Method).
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System Energy and “Energy-Like" Functions

We have learned Lyapunov’s indirect method to analyze the (local) stability of
the equilibrium point of the systems. In this lecture, we will be able to use
Lyapunov’s direct method to analyze the stability properties of an equilibrium
point which enables us to ensure stability, asymptotic stability and exponential
stability of these equilibrium points in “local" and “global" sense.

The motivation for Lyapunov’s direct method comes from the consumption of
energy of the system. For example, Hamiltonian systems governed by Hamil-
ton’s equations.

Consider a two dimensional system is a scalar function of the state and we
will denote this by V .

The energy of the equilibrium point is zero.

Now, let us draw a curve to all points in the state space where the energy
has the same constant value, say c1. Let us, then draw another curve
through all the points in the state space where the energy has another
constant where c2 which is greater than c1. These curves are called
level curves or level surfaces (in Rn). These curves/surfaces represent
constant energy levels for the system.
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System Energy and “Energy-Like" Functions

Figure: The Level Surfaces Representing Constant Energy Levels V(x) = ci ,
i = 1,2 (0 < c1 < c2).

Level surfaces V(x) = ci , 0 < c1 < c2 < c3 < . . . are the surfaces that represent
constant energy levels!

Question: How to choose this energy function to analyze the stability proper-
ties of the equilibrium point at the origin?

Recall that x = 0 is an equilibrium point of ẋ = f (x). What we do is that we
study the time evolution of the energy of the system. Specifically, we study the
energy evolving along the system trajectories.

19 / 23 Gökhan Göksu, PhD MTM5101



System Energy and “Energy-Like" Functions
If the system trajectory moves towards level curves representing higher energy levels,
then this corresponds to moving further and further away from the equilibrium point
which should suggest that the origin is unstable as shown in the following figure.

Figure: Energy increases along x(t).

In this case, the time evolution of the energy will be positive:

V̇(x) =
dV
dt
=
∂V
∂x
⋅ f(x) > 0

Remember that, we compute the time evolution of the energy along the system trajec-
tories by simply taking the time derivative of the energy function V :

V̇(x) =
dV
dt
= ⟨

∂V
∂x

,
dx
dt
⟩ =

∂V
∂x
⋅ f(x)

Remember also that, this is also called the directional derivative of the function V along
the vector field f (or Lie derivative).
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System Energy and “Energy-Like" Functions
If the system trajectory moves along the level curves, then this means that
the system trajectories intersect curves representing lower and lower energy
levels until the energy becomes zero which is at the origin which corresponds
to negative time evolution of energy:

V̇(x) = dV
dt
= ∂V

∂x
⋅ f (x) < 0

This indicates that the origin is an asymptotically stable equilibrium point as
shown in the following figure.

Figure: Energy decreases along x(t).

Note that, we do not need to solve ẋ = f (x) in order to see how the energy
increases or decreases along x(t). The sign of the directional derivative of
the energy function V does this job.
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System Energy and “Energy-Like" Functions

If the time derivative of the energy function is allowed to be zero, then the
energy is constant at some future time meaning that the system trajectory
moves along one of the level curve. So when the time derivative of the energy
function is either negative or 0, mathematically speaking:

V̇(x) = dV
dt
= ∂V

∂x
⋅ f (x) ≤ 0

then we do not necesserily have convergence but the behavior is similar to
that of a stable equilibrium point as shown in the following figure.

Figure: Energy decreases or is constant along x(t).
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System Energy and “Energy-Like" Functions

These intuitive observations hold for mechanical and electrical systems, which
have a well-defined energy concept.

Lyapunov formalized and generalized these intuitive observations for general
dynamical systems in his doctoral thesis at Universty of Kharkiv:

A. M. Lyapunov, The General Problem of the Stability of
Motion (In Russian), University of Kharkiv Doctoral Dis-
sertation, 1892.

The theorems presented here, which constitute Lyapunov’s direct method, are
valid for general systems, not only for electrical or mechanical systems for
which we have a well-defined energy concept. Instead of the energy function,
we must therefore use an “energy-like" function. This “energy-like" function
has to serve as a generalized energy function such that it satisfies certain
conditions and, therefore, we can use it to analyze stability of the general
dynamical systems.
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