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Lyapunov Functions and Lyapunov’s Stability Theorem

Example (Pendulum without Friction)

1 ! 2 ).(1 =Xo,
:in
i ).(2 =— %sin X1
Recall the “spoiler" of last week, our Lyapunov function “candidate” may be
V(x) =Vpot(x) + Viin(x)
g

X-
:—[0 17$i" ydy+%x22:%(1—cosx1)+%x22.

Note that, V € C'. We choose
D={xeR?||x|<2r}cR?
and this implies

V(0)=0and V(x) >0, Vxe D~ {0}.
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Lyapunov Functions and Lyapunov’s Stability Theorem

Example (Pendulum without Friction)

! ! ).(1 =Xz,

).(2:—%5"1 X1

Differentiating V along the solutions of the system yields to

sV _ov. oV, g 9. )_
V(X)_dt_8x1x +8x2X2_£SInX1X2+X2( Zsmx1 =0, VxeD

This makes sense, since this is a conservative system. Therefore
V:D={xeR?||x|<2r} >R

is a Lyapunov function for x = 0 which tells us that x = 0 is a stable equilibrium
point.
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Example (Pendulum with Friction)
Consider, now, the system governed by pendulum with friction:

)-(1 =Xo

)'(2 =— gsin X1 — EXZ.
L m
For simplicity, let us take m = 1.

Since a friction force is acting on this system, the system is no longer a con-
servative system. Friction is a dissipative force, which draws energy from the
system. Let us again choose the same Lyapunov function “candidate”, which
we know that V € C', V is positive definite in D = {x ¢ R? | |x| < 2 }. Now, let
us check the derivative of V along the solutions of the system:

V(x) = %sin X1Xo + Xo (7%sin Xy — kxz) = 7kX§ <0, VxeD

which implies that x = 0 is a stable equilibrium point. Moreover, we know that
x =0 is an asymptotically stable equilibrium point.
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Example (Pendulum with Friction)
X1 =Xo
).(2 =—gsin X1 —kXQ.

Let us replace the term (1/2)x22 by more general quadratic form (1/2)x™ Px for some
2 x 2 positive definite symmetric matrix P:

.
V(x) = 2xTPx+ & (1 —cos xq) = [X1] [P Pz [[X11 94 _coqx)
2 V4 2| X2] P12 P22]|X ¢

1 1
:*P11X12 + P12X1 X2 + —p22x22 + 9(1 —cos Xy)
2 2 l
For the matrix P to be positive definite, the elements of P must be satisfy

P11 >0, Ppi1po - Py >0

The directional derivative of V along the solutions of the system yields to
V(x) = (P11X1 + P12X2% sin X ) X2 + (P12X1 + P22X2) (—% sin Xy — sz)
=%(1 = P22)X2sin Xq — %P12X1 sin X1 + (P11 — P12k) X1 X2 + (P12 — Pa2k) X3
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Example (Pendulum with Friction)
X1 =X
).(2=—gsin Xq —sz.
L
Now, we want to choose p11, p12 and po2 such that V < 0. Since the cross-

product terms xosin x; and xyx2 are sign indefinite, we will cancel them by
taking p> = 1 and py1 = kp12. With these choices, we have

pi1p2z — Po = pra(k —pi2) >0 = 0 < pio <k (for k > 0)
for V(x) > 0. Let us take pi2 = &, then V(x) will be

. 1 .

V(x) = —E%km sin X1 — kx5
The term x;sin x; > 0 for all 0 < [x;| < 7. Taking D = {x ¢ R? | x| < 7}, we
see that V(x) < 0 over D~ {0}. Thus, by Lyapunov’s Direct Method, we can
conclude that x = 0 is asymptotically stable.
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Lyapunov Theorem for Global Asymptotic Stability
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Let us consider the system which we analyzed in Lyapunov’s indirect method (the lin-
earization method):

X =-X
Now, let us analyze the stability properties of the equilibrium point x = 0 by using Lya-
punov’s direct method. The system here may be interpreted as a mechanical system

where x is the velocity and a nonlinear friction acts on the system. No potential forces
act on the system, so the system energy is the kinetic energy:

1 1
E=Egn=-v?>==-x°
kin > >

So, this is one motivation for this choice of Lyapunov function candidate V(x) = %xz.
An another motivation is that this is a simple choice of a quadratic Lyapunov function

candidate V(x) = x Px where P =/ and since x ¢ R, we have V(x) = 1x2.

Note that, V e C', V(0) = 0 and V(x) > 0, ¥x # 0 which implies that V is positive
definite in D\ {0} = R« {0}. The directional derivative reads V(x) = xx = -x* < 0,
vx + 0 which tells us V is negative definite in D~ {0} = R ~ {0}. By Lyapunov’s Direct
Method, x = 0 is LAS. Note that, the conditions for being strict Lyapunov function are
satisfied in the whole state space R, so it is quite natural to as the following question:

Question: Can we conclude that the origin x = 0 is GAS?

Let us consider the following theorem!
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Theorem (Lyapunov Theorem for GAS)

If
» 3 a strict Lyapunov function V : R" — R for x = 0 and
> V is radially unbounded

then x = 0 is globally asymptotically stable (GAS).

Definition (Radial Unboundedness)
V is radially unbounded if and only if V(x) - o as | x| - oo.

Example

Turning back to V(x) = $x* = 1| x||?, this expression tells us that V is a
radially unbounded function. This shows that by Lyapunov Theorem for GAS,
we can conclude that x = 0 is GAS for x = —x.

Question: Why the radial unboundedness condition is necessary to conclude
global asymptotic stability based on Lyapunov analysis?
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For continuously differentiable fcns, say V € C', the following implications hold
> positive definiteness = level surfaces are closed for small values of c,
which is required for local results

> radial unboundedness = level surfaces are closed V¢, which is required
for global results

So, if the level surfaces are not closed, we may have that x| — co even if
vV <O0.

Example
x2 2
Let us take V(x) = ﬁ +X5.
Clearly, this function is positive definite. On the other hand,
» Forxi=0,x2 >00 = V(Xx)—>oo0as|x|— o
» Forx;=0,x1 > 00 = V(x)—>1as|x]||— oo!

So, V(x) is not radially unbounded. There exist trajectories along which the
time derivative of V is strictly negative, meaning that the trajectory intersects
level curves corresponding to lower and lower ¢ values, but the trajectory does
not converge to the equilibrium point x = 0. See the figure on next slide!
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Lyapunov Theorem for Global Asymptotic Stability
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Figure: A Diverging Trajectory with V(x) < 0.

i

X1

«

Although the value of the V function decreases along the trajectory, the tra-

jectory is allowed to slip away from the origin since the level curves are not
closed.

See also KYP Lectures (L.4.4-10:57): https://youtu.be/mIkgW_gUKjo?
list=PLdeo5-jZaF jNPRGbKxWXrwnkNvjOkP_j8&t=657
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We also have a Lyapunov theorem for exponential stability. We still consider
the same system as before

X = f(x)

where f: D c R” - R" is locally Lipschitz and x = 0 € D is an equilibrium point
of the system.

Theorem (Exponential Stability)
If there exists a function V : D — R and constants a, ki, ko, ks > 0 such that
) VeC'
i) kil X% < V(x) < ke[ X[%, ¥x € D (V(X) > o0 as | x| > oo )
i) V(x)<-ks|x|? VxeD
Then, x = 0 is exponentially stable (ES).

Remark (Global Exponential Stability)

If the conditions in Exponential Stability Theorem are satisfied with D = R",
then x = 0 is globally exponentially stable (GES). The condition (ii) implies
radial unboundedness condition. Hence, there is no need to impose radial
unboundedness condition for GES.
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Lyapunov Theorem for Global Exponential Stability

Some further remarks:

> The Exponential Stability Theorem is also called Barbashin-Krasovskii
Theorem.

> || - || can be any p-norm on the vector state space.

» This condition is stricter than the Asymptotic Stability Theorem because
ES is stricter than AS.

Global Exponential Stability Convergence Rate: If the equilibrium point
x = 0 of x = f(x) is globally exponentially stable, then the solution of the
system satisfies

Ko\ 3 -
Xl () 1xOle =, viz0, |x©)<c

where ¢ > 0.

12/13 Gokhan Goksu, PhD MTM5135



Lyapunov Theorem for Global Exponential Stability

13/13

Example
Let us analyze the stability properties of the equilibrium point(s) of the system

X=-x-x°

by using Lyapunov direct method which we analyzed in Lyapunov’s indirect method (the
linearization method, with a = 1).

Note that,

Xx=-x-x3=-x(1+x?)=0
so that x = 0 is the only equilibrium point. As shown before, V(x) = %xz = %HXHZ is
a Lyapunov function candidate for all x ¢ R and V ¢ C'. (i) of Exponential Stability
Theorem is also satisfied with ky = ko = % a = 2. The directional derivative of V along
this system reads

V(x) = xx=-x%-x*<-x%=—|x|?

which tells us that (iii) of Exponential Stability Theorem is satisfied with k3 = 1, a = 2.
Note that D = R, so that x = 0 is GES. The solution of this system satisfies the following
GES convergence rate

Ix(t)] < Ix(0)]e™", vt=o.
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