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Comparison Functions

PD |

o continuous ack

a(0) =0 { lims— o0 a(S) = 00

a(s)>0,Vs >0

K

a € PD B, ek, vt>0

« nondecreasing B(s, ) nonincreasing, ¥s > 0
limi—o B(S,1) =0,Vs >0
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Comparison Functions: Examples

3/27

Example
> afs) = 1+s°’ forany ¢ > 0
> os) = 1+Sc, foranyc >0
> afs) =tan"'(s)
s, if |s] <1
> als) =sails) = {sgn(s), if :s: > 1
> a(s) = sat(s; a,b) = a+ 22 tan~'(s)
> «(s)=s%foranyc >0
> o(s) = min{s, §°}
> B(s,r) = mr
> B(s,r)=s% "’

i
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Equivalent Representation of Radial Unboundedness
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Lemma (4.3 in [Khalil, 2002])

LetV : D — R be a continuous positive definite function (may not be PD/)
defined on D C R" that contains the origin. Let B/[0] C D for some r > 0.
Then, there exist a1, a2 € K defined on [0, r] such that

ai(|x]) < V(x) < az(|x])

for all x € B/[0]. If D =TR", the functions .y and o, will be defined on [0, oo)
and the foregoing inequality will hold for all x € R". Moreover, if V(x) is
radially unbounded, then a1, az € Koo-

Example
> V(x)=x"Px = Ain(P)X|? < x"Px < Amax(P)|x|?

> Given x € R", |x| denotes its Euclidean norm.
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Equivalent Representation of GAS
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For a system with no inputs x = f(x), there is a well-known notion of global
asymptotic stability (for short from now on, GAS, or “0-GAS" when referring to
the system with no-inputs x = f(x, 0) associated to a given system with inputs
x = f(x,u) due to Lyapunov, and usually defined in “e-6" terms. It is easy
to show that the standard definition of GAS (0-GAS) in previous lecture is in
fact equivalent to the existence of g € KL satisfying the following, along the
solutions of x = f(x) (x = f(x, 0))

Ix(t, %0)| < B(|xol, 1), Vxo € R", Vt > 0.
Observe that, since 8 decreases on t, we have, in particular:

Ix(t,%0)| < B(|%|,0),  Vxo €R", Vt>O0.
which provides the stability part of the GAS definition while

[x(t, x0)| < B(]%l, 1) 2 0, Vxo € R”,

which is the attractivity (convergence to the equilibrium point) part of the GAS
definition.
Note: From now on, unless written explicitly, the solutions x(t, xo) or x(t, Xo, U)
for x = f(x) and x = f(x, u), respectively, will be written in short as x(t) to
avoid cumbersome notation!
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Equivalent Lyapunov Theorem for Stability
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Theorem (4.8 in [Khalil, 2002])

Let x = 0 be an equilibrium point for x = f(x) and D C R" be a
domain containing the origin. Let V : D — R be a continuously
differentiable function such that

Wi (x) < V(x) <Ws(x)
oV
af(x)

forallt > 0 and x € D, where W; and W. are continuous
positive definite functions on D. Then, x = 0 is stable.

IN
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Equivalent Lyapunov Theorem for AS
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Theorem (4.9 in [Khalil, 2002])

Let x = 0 be an equilibrium point for x = f(x) and D C R" be a domain
containing the origin. Let V : D — R be a continuously differentiable
function such that

Wi (x) < V(x) <Wa(x)
%f(x) <—Ws(x)

forallt > 0 and x € D, where W;, W> and W5 are continuous positive definite
functions on D. Then, x = 0 is asymptotically stable. Moreover, if r and c are
chosen such that B;[0] = {x € D| |x| < r} and ¢ < miny -, Wi(x), then
every trajectory starting in {x € B,[0] | Wa(x) < c} satisfies

Ix(8)] < B(Ix(0)|,t), Vt=>0

for some 8 € KL.
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Equivalent Lyapunov Theorem for AS

Figure: Geometric representation of sets in Theorem 4.9.
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Equivalent Lyapunov Theorem for GAS
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Theorem (4.9 in [Khalil, 2002])
Let x = 0 be an equilibrium point for x = f(x). LetV : R” — R (D =R"!) be a
continuously differentiable function such that

a1 ([x]) < V(x) <az(|x])

P 1) < - wa()

forallt > 0 and x € R", where a1, ap € Koo and Ws is continuous positive definite
function on R". Then, x = 0 is GAS.

Let us remember the Lyapunov theorem for ES/GES shown last week:

Theorem (4.10 in [Khalil, 2002])

Let x = 0 be an equilibrium point for x = f(x). Let V : D — R be a continuously
differentiable function such that

ki [x| < V(x) <kolx|?
ov
—f < — ks|x|?@
o100 <~ falx]

forallt > 0 and x € D, where ky, ko, k3 and a are positive constants. Then, x = 0 is
ES. If D =R", then x = 0 is GES.
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Nonlinear Systems: 0-GAS = Good Behavior wrt Inputs

» Car trailer system
> Video:
https://www.youtube.com/watch?v=4jk9H5AB41M
» Aircraft
» Video:
https://www.youtube.com/watch?v=4UfmsqtTGa0
» Car active suspension system
> Video:
https://www.youtube.com/watch?v=kRt 7THOk8A4k
» Building
> Video:
https://www.youtube.com/shorts/rJ72LruGgyU
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https://www.youtube.com/watch?v=4jk9H5AB4lM
https://www.youtube.com/watch?v=4UfmsqtTGa0
https://www.youtube.com/watch?v=kRt7H0k8A4k
https://www.youtube.com/shorts/rJ72LruGgyU

Nonlinear Systems: 0-GAS = Good Behavior wrt Inputs
For linear systems x = Ax + Bu:

> Ac ]Rnxn, B c R"™m

> If Ais a Hurwitz matrix (Re(i(A)) < 0 forall i =1, ..., n), then the linear
system is 0-GAS.

» Such a 0-GAS linear system automatically satisfies all reasonable
“input-to-state stability" properties [Sontag, 1990]':

» Bounded inputs = bounded state (BIBS) trajectories
» Converging inputs = converging state (CICS) trajectories

This is generally not the case for nonlinear systems x = f(x, u)!

Example

Consider the scalar system (n = 1) with a single input (m = 1)
X=-—x++u:

> The system is clearly 0-GAS, since it reduces to x = —x when u = 0.

> However, for u = (2t +2)~"/2 and xp = V/2, the system produces
unbounded and even diverging state trajectory x(t) = (2t + 2)'/2!

"Mathematical Control Theory: Deterministic Finite Dimensional Systems
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Nonlinear Systems: 0-GAS = Good Behavior wrt Inputs
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Figure: Diverging state for converging input.
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Estimates (Gains) for Linear/Nonlinear Systems
Recall the solution of the linear system x = Ax + Bu can be written as:

t
x(t) = e*x(0) + / e Bu(r)dr
0

If Ais Hurwitz, there exists some k, A > 0 such that ||| < ke~ which, in
turn, gives the following state estimate

x(1)] <klx(0)]e™™ + /ke_“ "1B|||u(r)|dT

<KIx(O)e + KIB| sup ju(r)| e / eV dr
0

,/\1 eM—1
=k|x(0)le"™ + K||B] sup u(r)le” X

<k|x(0)]e™* + k sup |u(r)|
T€[0,1]

where k = k - max{1, 121}
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Estimates (Gains) for Linear/Nonlinear Systems
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Motivated with this estimation, for linear systems, three most typical ways of
defining “input-to-state stability” in terms of operators {L?, L=} — {L? L=}
are as follows:

> L% L clx(t)] < [Xole T + sup, o g |u(7))]

> L2 L elx()] < |xole M + [y Ju(r)[PdT

> L2 12 e [y |x(7)[PdT < x| + [y |u(r)PdT
The missing case “L> — L2" s less interesting, being too restrictive, for prac-
tical reasons! Concerning the nonlinear system x = f(x, u), in general, under

“some" nonlinear coordinate change (see [Sontag, 2004]), we arrive to the fol-
lowing three concepts (or “estimates”) for nonlinear systems:

> L — L a(x(1)]) < B(|%l, t)+supTe[o g v((u(7)I)
> L2 oo a(\x(t)|) < B(Ixl, 1) + fI(Ju())dr
| Iy L fo a(|x(m)])dr < ao(|Xo]) + fo (Ju(m))d

Here, the functions (whlch measure the impacts of the state or input) are
a,a0,7 € Koo and 8 € KL. The “L™® — L[°°" (and “L? — [2" as well) esti-
mate leads us to the first concept that of input-to-state stability (ISS) whereas
“/2 — [>" estimate leads us to the second concept that of integral input-to-
state stability (ilSS).
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ISS and ilSS Notions

Definition: Input-to-State Stability (ISS) [Sontag, IEEE TAC, 1989]

The system x = f(x, u) is ISS if there exist 5 € KL and v € Ko such that, for
all o € R"and all u € U,

Ix(t; X0, U)] < B(Ixl, ) + v ([lull) , VE=0.

— Vanishing transients “proportional” to initial state’s norm
— Steady-state error “proportional” to input amplitude.

Definition: Integral Input-to-State Stability (iISS) [Sontag, SCL, 1998]

The system x = f(x, u) is iISS if there exist 8 € KL and vy, 12 € K« such
that, for all xop € R" and all u € U4,

[x(t; X0, U)| < B(|Xo, t) + 4 </Otu2(\u(s)|)ds) , Vt>0.

— Measures the impact of input energy.
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ISS and iISS Notions: Strengths and Weaknesses
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ISS and iISS: Central tools in nonlinear analysis and control:

» Theoretical contributions to: output feedback, optimal control, hybrid
systems, predictive control, chaotic systems. ..

> Applications in: robotics, production lines, transportation, bio-chemical
networks, control under communication constraints, neuroscience, ...

ISS

iISS

X = f(x,0) is GAS

X = f(x,0) is GAS

Bounded input = Bounded state

Bounded energy input
= Bounded, converging state

Converging input = Converging state

Converging input # Converging state

Cascade: ISS + ISS = ISS

Cascade: ilSS +ilSS = iISS

In practice, some systems do exhibit robustness for inputs under a certain
threshold, but diverge for larger ones.

Strong ilSS: halfway between ISS and ilSS.
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ISS and iISS Notions: Lyapunov Characterizations

> Part of the success of ISS and iISS is due to their Lyapunov characterizations

> Lyapunov function candidate (LFC):
> V:R" — Rx( continuously differentiable
> V(0)=0and V(x) >O0forallx #0
> V(x) — oo whenever |x| — oo.
Theorem: ISS and iISS Characterization [Sontag, Wang, SCL, 1995] & [Angeli et al.,
IEEE TAC, 2000]

The system x = f(x, u) is ISS (resp. iISS) if and only if there exist a LFC V, v € Koo,
and a € K (resp. a € PD) such that, for all x € R" and all u € R™

%f(x, u) < —a(|x]) + v(|u]). (D-K oo/ PD))

- G Strong o
ISS iISS 7
iISS

»
>
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ISS Characterization in Implication Form
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Theorem: ISS Char. in Implication Form [Sontag, Wang, SCL, 1995]

The system x = f(x, u) is ISS if and only if there exist a LFC V, x € K, and
& € K such that for any x € R” and any u € R™
oV .
X2 x(ju) = 5 fx,u) < —a(lx)) (D-1F)

Remark

Clearly, (D-K ) implies (D-IF). Assume now that (D-IF) holds with some & € K
and x € K. Without loss of generality, one can assume that & € K~ (see [Lin,
Sontag, Wang, SCL, 1995, Remark 4.1]). Let

v(r) = max{0,4(r)}
where
A oV ~
A(r) = max g =06 u) +a(xc(lul)) = Jul < |x] < x(r) -
Then v € C, v(0) = 0 and, therefore, v € Ko by definition. (D-K..) holds
because v(r) > supjy_, g—rf(x, u) + a(|x|) (consider the two seperate cases

x| = x(lul) and [x| < x(|u]))-
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Halfway Between ISS and ilSS: Strong ilSS Property

Definition: Strong iISS [Chaillet et. al., IEEE TAC, 2014]
The system x = f(x, u) is Strongly iISS if it is:
> iISS

> |SS with respect to small inputs

i.e., if there exist B € KL, v1,v0,v € Koo and input
threshold R > 0 such that, for all x, € R” and all u € U,

t
Xt X0, 0)] < B(I%ol. 1) + 11 ( / u2(|u(s)|)ds)
lul <R =

Ix(t; X0, U) < B(Ixl, 1) + v(llull) -

» For all u € U, the solution exists at all times

J
»> Converging input = converging state

> fot vo(Ju(s)|)ds < oo = bounded and converging state
> |lu|l £ R = bounded state.

19/27

Gokhan Goksu, PhD

o
MTM5135



Halfway Between ISS and iISS: Strong iISS Property

Theorem: K dissipation rate = Strong iISS [Chaillet et. al., IEEE TAC, 2014]
If there exists a LFC V : R" — R satisfying, for all x € R” and all u € R,

%f(X, u) < —a(|x]) + ¥(|ul).

where a € K and v € K, then the system x = f(x, u) is Strongly iISS with input
threshold R = v~ o a(c0).

Equivalently, we can state the following:
Corollary: Non-vanishing dissipation rate = Strong ilSS [Chaillet et. al., IEEE TAC,

2014]

If there exists a LFC V : R" — R satisfying, for all x € R” and all u € R,
ov
—f(x,u) < —W(x ul).
o 06 0) < = W) +3(|u))

where v € Ko and W is continuous positive definite satisfying
Woo := liminf|y oo W(X) > 0, then the system x = f(x, u) is Strongly iISS with input
threshold R = v~ (Wx).
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Halfway Between ISS and iISS: Strong iISS Property

However, the converse does not hold:
Counter-example: Strong ilSS + K dissipation rate [Chalillet et. al., IEEE TAC, 2014]

The scalar system
X B >
X = 1 +X2 |:1 |X|(U |U‘):| ’

is Strongly iISS. However, for all « € K and v € Koo no differentiable function
VR — Ry satisfies

Y (0)1(x,0) < ~a(lx]) + 1 (Jul).

> iISS: Vi(x) = 1 In(1 + x?) gives V4 < —x2/(1 + x2)? + u? + |ul
> ISSwrt |u] < 1: Vo(x) = x*/4 gives Vo < —x*/(1 + x?).
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ISS, iISS and Strong iISS Example
Consider the tank with a flat bottom and not necessarily constant cross-section [Daskovskiy,
IFAC POL, 2019].

g
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ISS, iISS and Strong iISS Example

By Toricelli’s law, the level x of the liquid changes with time due to the inflow and outflow
can be described by the following differential equation:
_a(x)u/2gx u
A(x) A(x)
where
A : [0,00) — (0, 00) is the cross-section area of the tank at the heightx
a : [0,00) — [0, 00) is the area of the hole, that in general may also depend on X
U is the rate of inflow to the tank
Let us consider the following three cases:

> Suppose that a(x) = a = (u/29)~" and A(x) = 1 + ¥/x. The ISS property can
be verified by considering V(x) = |x| = x. For this V, we have

V=-

Now, observe that we have

X|>42 = V< —LA
2(1+ Vx)
and since the function a(s) = — 5 __ and x(s) = 4s? are two class Ko

2(1+95)
functions, we can conclude that the system is ISS.

23/27 Gokhan Goksu, PhD MTM5135



ISS, iISS and Strong iISS Example

Let us consider the foIIowing three cases (continued):

» Suppose that a(x) = 1+X and A(x) = A = u+/2g. The iISS property
can be verified by considering V(x) = |x| = x. For this V, we have

X u
VX u

e
Vs 1+x A

Since the function o(s) = 1+S is a class PD function whereas ~(s) =
is a class K function, we can conclude that the system is ilSS.

> (Exercise) Show that the system is Strong iISS when a(x) = ﬁ and

A(x) = A= p\/2g.
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Cascades of ISS or ilSS Systems

Yy o0Xx = fi(x,x
U 22 To 21 T 1 '1 1(1 2)
Yo: Xo

fa(xe, U)

> [SS is naturally preserved in cascade [Sontag, EJC, 1995]
> {ISS is not preserved by cascade [Panteley, Loria, Automatica, 2001] & [Arcak et
al., SICON, 2002].
Theorem [Chaillet, Angeli, SCL, 2008]

Let V; and V5 be two Lyapunov functional candidates. Assume that there exist

Y1,72 € K, and a1, ap € PD such that, for all (x1, x2) € R™ x R™ and all u € R™,
oV,

aﬁ (x1,%2) < — a1 (Ix1]) + 71 (Ix2l)
ax 20, < — aalrel) + e (lul).
If v1(8) = Os_,0+ (2(8)), then the cascade is ilSS.

> qo(s) = Og_0+(q1(8)): Given g1, g2 € PD, we say that g1 has greater growth
than g, around zero if 3k > 0 such that limsupg_, o+ g2(5)/91(8) < k

25/27
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Cascades of Strong iISS Systems

10X = f
u o T 5, T 1ok 1(x1, %2)
ot X2 = h(x,u)
Theorem: Strong ilSS is preserved under cascade [Chaillet et. al., Automatica, 2014]

If the systems x; = fi(x1, uy) and X, = fo(x2, Uo) are Strongly iISS, then the cascade
(2) is Strongly ilSS.

Corollary: iISS + Strong iISS = iISS [Chaillet et. al., Automatica, 2014]

If Xy = fi(xq, uy) is Strongly iISS and X, = f(xo, Un) is iISS, then (2) is iISS.
Corollary: GAS + Strong iISS = GAS [Chalillet et. al., Automatica, 2014]

If X1 = fi(xq, ur) is Strongly iISS and X = f2(x2) is GAS, then

X1 = hH(a,x)

%o fx) is GAS.
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ISS/iISS Systems: Summary

ISS Strong ilSS iISS
0-GAS v v v
Forward completeness Vu € U v v v
Bounded input-Bounded state v For ||ul| < R ®
Converging input-Converging state v v ®
Preservation under cascade v v Growth rate
Lyapunov characterization a € Koo | Open question a e PD
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