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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

As a result of the differences between linear and nonlinear systems
that we have discussed before there are some phenomena that can
be observed in nonlinear dynamical systems which you do not have
in linear dynamical systems. As we have seen, the behavior, that the
nonlinear system displays, depends on the ICs and as a result of this,
in nonlinear control systems, the stability that the system displays may
depend on the magnitude of the reference signal given as an exoge-
neous input to the system.

Linear systems had asymptotically stable, unstable or marginally sta-
ble behavior which of these behaviors did not depend on ICs whether
the system started close to or far away from the equilibrium point. In
other words, for linear systems, there was no difference between the
local and the global behavior when considering the type of stability.
Example: Motor valve process (KYP Video Lecture).
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

In linear systems, you may obtain oscillations in two ways:

▸ If you perturb the linear system by a sinusoidal input, then the
system state/output will oscillate as well. For example, let us
consider the following scalar linear equation

ẋ(t) =bu(t), u = sin(ωt), t ≥ 0.

The solution of this equation can be expressed as

x(t) =x0 + b∫
τ=t

τ=0
sin(ωτ)dτ

=x0 + (1/ω)B − (1/ω)B cos(ωt)

which has an oscillatory behavior.
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

In linear systems, you may obtain oscillations in two ways:

▸ We can also have periodic solutions in linear systems without
any external input. When the system is marginally stable, we get
periodic solutions. Note that, the amplitude of these solutions is
given by the initial value.
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

Another phenomenon that you may observe in nonlinear systems which
you do not have in linear systems is that of a stable periodic solution.
These solutions are called limit cycles.

For such kind of systems that you may observe limit cycles, differently
from linear systems, the frequency and the amplitude of the solutions
may be independent of the initial state and in the case when the limit
cycle is stable, the trajectories surrounding it converge to the limit cy-
cle.
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

The same also happens when it starts inside the limit cycle. This is
something that we can never get from a linear system. Therefore,
in practice, if we want to create stable oscillations, we must use a
nonlinear system.

One well-known example such an oscillator is described by the Van
der Pol oscillator which was proposed by the Dutch electrical engineer
and physicist Balthazar Van der Pol while he was working for Philips.

Example (Van der Pol Oscillator)
The Van der Pol oscillator is described by the following equation:

ẍ + ε(x2
− 1)ẋ + x = 0.

This equation describes a circuit with a resistance, an inductor and a
capacitor where the resistance element is nonlinear.1

1For more details, see: scholarpedia.org/Van_der_Pol_oscillator
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

Example (Van der Pol Oscillator)
The Van der Pol oscillator is described by the following equation:

ẍ + ε(x2
− 1)ẋ + x = 0.

An intuitive description why this circuit produces stable oscillations is
that depending on the value of x , the sign of the resistor coefficient
“ε(x2 − 1)" changes.

▸ When x > 1 the sign of the coefficient is positive and the resistor
element, thus consumes energy.

▸ When x < 1, the sign of the resistor coefficient is negative and
the resistor element generates energy.

This transition between alternately consuming and producing energy
generates stable oscillations.
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

Example (Van der Pol Oscillator)

ẍ + ε(x2
− 1)ẋ + x = 0.

The simulation results with ε = 0.1 shows that the frequency and the
amplitude of the time evalution of x does not depend on ICs!
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

Other phenomena that you may have in nonlinear systems which never
occur in linear systems are chaos and bifurcations. Bifurcation means
that the system behavior changes character with only small changes
in the parameters of the system while for the systems with chaos the
system behavior changes character with small changes in the initial
value. For example, let us consider the following example

Example
Consider a second order system perturbed by a sinusoidal input:

ẍ + 0.1ẋ + x5
= 6 sin t

Let us also take the following two different ICs:

▸ x(0) = 2, ẋ(0) = 3

▸ x(0) = 2.01, ẋ(0) = 3.01
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Common Nonlinear Phenomena - 1
(Tür: Yaygın Görülen Bazı Nonlineer Sistem Özellikleri)

Example
▸ ẍ + 0.1ẋ + x5

= 6 sin t
▸ - - - x(0) = 2, ẋ(0) = 3
▸ - - - x(0) = 2.01, ẋ(0) = 3.01

Even the initial values are almost the same, we see that the behavior of the
state is different in the two cases. We may expect a sinusoidal output in steady
state, but the equation has nonlinearity x5 and because of this simple nonlin-
earity, the system demonstrates chaos behavior. (KYP Video Lecture)
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Common Nonlinear Phenomena - 2
The Trivial Question: When to Use NL Analysis/Design?

An important motivation may be that if you see that the system displays behavior that
is recognized as nonlinear phenomena that do not occur in linear systems, then you
know that the system cannot be properly described by a linear model. If this behavior
is essential, meaning that it does not only occur in extreme conditions but also in a
particular region of the state space where the system will be operating (for instance,
close to the invariant set that you are interested in stabilizing), then you should use a
nonlinear model and the corresponding nonlinear analysis and control design tools.

Example (Car Parallel Parking)
▸ Kinematic model:

ẋ1 = sin(x3)u1

ẋ2 = cos(x3)u1

ẋ3 = u2

x1, x2: position of the center point of the front axle,

x3 : angle of the front axle with respect to x1 -axis,

u1 : forward velocity

u2 : angular velocity
▸ Control problem: Parallel parking, i.e. find u = [u1 u2]

T that makes the system
asymptotically stable (we want all xi → 0).
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Common Nonlinear Phenomena - 2
When to Use NL Analysis/Design?

Example (Car Parallel Parking)
▸ Kinematic model:

ẋ1 = sin(x3)u1

ẋ2 = cos(x3)u1

ẋ3 = u2

x1, x2: position of the center point of the front axle,

x3 : angle of the front axle with respect to x1 -axis,

u1 : forward velocity

u2 : angular velocity

▸ Control problem: Parallel parking, i.e. find u = [u1 u2]
T that makes the system

asymptotically stable (we want all xi → 0).

▸ Linearized model: Using sin(x3) ≈ 0 and cos(x3) ≈ 1
ẋ1 = 0

ẋ2 = u1

ẋ3 = u2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Not controllable! Ô⇒ Cannot affect car’s position along x1-axis!

▸ So, this is also a case where a linear model does not properly describe the real
system!
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Fundamental Properties: Existence and Uniqueness
For a system ẋ = f (t ,x), we expect that starting an experiment from a
certain initial state at time t = t0, i.e. x(t0) = x0, the system will move
and its state will be well-defined up to a future time. In addition, for a
deterministic system we expect that if we repeat the experiment with
exactly the same initial state at time t0, then we would get exactly the
same motion.

Theorem (Local Existence and Uniqueness)
If ▸ f (t ,x) is piecewise continuous in t,

▸ f (t ,x) satisfies

∥f (t ,x) − f (t ,y)∥ ≤ L∥x − y∥, ∀x ,y ∈ B, ∀t ∈ [t0, t1] (LC)

where the ball B is defined as B = {x ∈ Rn ∣ ∥x − x0∥ ≤ r}.

Then, there exists a unique solution of the initial value problem (IVP)
ẋ = f (t ,x),x(t0) = x0 , i.e. x(t) is defined locally on t ∈ [t0, t0 + δ] for
some δ > 0.

▸ LC: Lipschitz Condition
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Fundamental Properties: Existence and Uniqueness

If f ∶ R → R and we rearrange the Lipschitz condition a little, then we
have

∣f (x) − f (y)∣
∣x − y ∣

≤ L (LC-R)

So, the Lipschitz condition in this case says that the slope cannot be
infinitely large and it has to be bounded. In other words, the Lipschitz
condution says that the function should not grow too fast.

Geometrical Interpretation: Google Drive (Lipschitz.mp4)
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https://drive.google.com/drive/u/0/folders/1q7tvfkf9rNES_GoyKcwCYNCOZeZr74zp


Fundamental Properties: Existence and Uniqueness

Example
Let us consider the dynamical system ẋ = 3

√
x with the IC x(0) = 0.

Note that, the vector field f (x) = 3
√

x is defined as f ∶ R → R and,
therefore, we may use the condition (LC-R). Differentiating f yields to

∣
df
dx
∣ = ∣

1
3
⋅

1
3
√

x2
∣ →

x→0
∞. (1)

So, the function f (x) = 3
√

x has an infinite slope at zero and, therefore,
it does not satisfy the Lipschitz condition of Theorem 8. So, Theorem
8 does not guarantee the existence and uniqueness of the solutions
of the IVP. Geometrically, we can not “trap" the function f (x) = 3

√
x by

the lines with slopes L and −L around x = 0. However, the IVP has
actually solutions. It is possible to solve IVP analytically and we can
prove that there exists a solution but is not unique:

▸ x(t) = 3
2

√
2
3 t and x(t) = 0 are solns of this IVP.
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Fundamental Properties: Existence and Uniqueness
The key assumption of the “Local Existence and Uniqueness Theo-
rem" was “locally Lipschitzness". There are some further related defi-
nitions of this property.

Definition
The function f ∶ D ⊂ Rn → R is said to be

▸ locally Lipschitz on D ⊂ Rn, if f is locally Lipschitz at any point in
D. The Lipschitz constant L can be different for each point and
can vary over D,

▸ Lipschitz on D, if L is same for all points in D,

▸ globally Lipschitz, if f is Lipschitz on the whole state space Rn.

Based on these definitions, we have these chain of inclusions for dif-
ferent types of Lipschitz continuity:

locally Lipschitz on D ⊂ Lipschitz on D ⊂ globally Lipschitz

▸ Domain: Open and Connected Set!
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Fundamental Properties: Existence and Uniqueness
As seen in the previous example, if a function fails to be discontinu-
ous at a certain point of the subset D, then it also fails to satisfy locally
Lipschitzness at the point of discontinuity. On contrary, the locally Lips-
chitzness can be guaranteed by the boundedness of partial derivatives
which is demonstrated in the following lemma.

Lemma (Bounded DerivativesÔ⇒ Locally Lipschitzness)
Let f ∶ [a,b]×D → Rn be continuous for some domain D ⊂ Rn. Suppose
that [ ∂f

∂x ] exists and is continuous on [a,b] ×D. If, for a convex subset
W ⊂ D, there is a constant L ≥ 0 such that

∥
∂f
∂x
(t ,x)∥ ≤ L on [a,b] ×W ,

then,

∥f (t ,x) − f (t ,y)∥ ≤ L∥x − y∥ for all t ∈ [a,b], x ,y ∈W .

▸ Recall: Convex Set!
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Fundamental Properties: Existence and Uniqueness

We have the following lemma, if the uniform boundedness of the partial
derivatives is not satisfied.

Lemma (Continuous DerivativesÔ⇒ Locally Lipschitzness)
Let f ∶ [a,b] × D → Rn be continuous for some domain D ⊂ Rn. Sup-
pose that [ ∂f

∂x ] exists and is continuous on [a,b] ×D. Then f is locally
Lipschitz on D.

Lemma (Cont.&Cont. Der’s. on Rn Ô⇒ Gl. L’ness.⇐⇒ Bdd. Der’s.)
If f(t,x) and [ ∂f

∂x ] (t ,x) are continuous on [a,b] × Rn, then f is globally
Lipschitz on [a,b] × Rn if and only if [ ∂f

∂x ] is uniformly bounded on
[a,b] ×Rn.
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Fundamental Properties: Existence and Uniqueness

Example
The function

f (x) = [−x1 + x1x2
x2 − x1x2

]

is continuouly differentiable on R2.

▸ It is not globally Lipschitz since [ ∂f
∂x ] (t ,x) is not uniformly bounded

on R2 (i.e. is depending on x).

▸ However, on any compact subset of R2, f is Lipschitz.

Suppose W = {x ∈ R2 ∣x1∣ ≤ a1, ∣x2∣ ≤ a2}. The Jacobian matrix is
given by

[
∂f
∂x
] (t ,x) = [−1 + x2 x1

−x2 1 − x1
] .
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Fundamental Properties: Existence and Uniqueness
Example

f (x) = [
−x1 + x1x2

x2 − x1x2
]

Using the induced matrix norm (∞− norm), we have

∥
∂f
∂x
∥
∞

= max{∣ − 1 + x2∣ + ∣x1∣, ∣x2∣ + ∣1 − x1∣}

All points in W satisfy

∣ − 1 + x2∣ + ∣x1∣ ≤ 1 + a1 + a2 and ∣x2∣ + ∣1 − x1∣ ≤ 1 + a1 + a2

Hence, we have

∥
∂f
∂x
∥
∞

≤ 1 + a1 + a2.

By “Bounded Derivatives Ô⇒ Locally Lipschitzness Lemma", we can con-
clude that f satisfies the following inequality

∥f (x) − f (y)∥ ≤ (1 + a1 + a2)∥x − y∥ x , y ∈W

and a Lipschitz constant can be taken as L = 1 + a1 + a2.
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Fundamental Properties: Existence and Uniqueness

Example
Next week, we will continue the Lipschitz continuity of the following
function

f (x) = [ x2
−sat(x1 + x2)

]

where the saturation function is defined as

sat(x) =
⎧⎪⎪
⎨
⎪⎪⎩

x , if ∣x ∣ ≤ 1
sgn(x), if ∣x ∣ > 1.

Let us see, what will happen ,
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